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Abstract

Do hazardous levels of air pollution in developing countries reflect low demand for air quality or
imperfect information about its benefits? This paper implements an experiment to estimate the
demand for clean air in a low-income country and tests for several possible market failures in in-
formation that may affect it. Combining randomized price variation for low-cost pollutionmasks
with day-to-day variation in ambient air quality, we estimate an average marginal willingness-
to-pay (MWTP) for an annual 10 unit reduction in PM2.5 of $1.14 (USD) among low-income resi-
dents of Delhi, India. This estimate is low in global terms, but increases more than five times for
respondents who are treated with a description of the health effects of air pollution prior to de-
mand elicitation. These findings suggest limited demand for clean air may partly reflect limited
information about its benefits.
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1 Introduction

Residents of the world’s largest cities endure levels of air pollution well beyond public health rec-
ommendations (WHO 2018).¹ The combination of high population density and low air quality has
dire consequences: published estimates put the global number of deaths from air pollution at or
above five million annually (Burnett et al. 2018; Lelieveld et al. 2019), in addition to the substantial
morbidity and productivity impacts (Graff Zivin and Neidell 2013). In Delhi alone, around 30,000
lives are estimated to be lost each year from ambient air pollution (Burnett et al. 2018). Why do
particulate pollution concentrations remain high despite such large public health costs?

Clean air is a public good. One explanation for low levels of air quality in many major ur-
ban areas is that poor households have a high marginal utility of consumption spending; in other
words, that people with very limited resources rationally value consumption in the current period
of future health improvements. Under this hypothesis, high levels of air pollution in poor areas
is the natural consequence of limited public demand among the population. As people become
wealthier, demand for health-improving goods, including clean air, should rise (Hall and Jones
2007). The implication of this explanation, often described as the “Environmental Kuznets Curve”
(Kuznets 1955; Grossman and Krueger 1995), is that only after substantial economic growth will
the costs of environmental regulation justify its benefits.

Richer explanations hold that low observed demand for air quality could also be the conse-
quence of market failures, such as misinformation, that are frequently observed in developing
country settings (Greenstone and Jack 2015).² Revealed preference measures of demand for air
quality could be biased downward if individuals are either uninformed or inattentive to the bene-
fits of air quality. For example, several studies demonstrate that informing households about the
either presence of risk of water pollutants made them more likely to purify their water (Jalan and
Somanathan 2008; Bennear et al. 2013). With respect to air quality, Ahmad et al. (2022) demonstrate
that providing air pollution forecasts makes individuals more responsive to air pollution and in-
creases their demand for protective air filtering masks.³ If information provision can be shown to
shift not only the demand for defensive expenditures (such as masks), but also the demand for
air quality itself, then it cannot be the case that air quality levels are merely reflections of high
marginal utility of consumption for poor populations.⁴ Other market failures could also limit the

1. As of 2019, all ten of the largest cities in the world had PM2.5 averages that were exceeded the World Health Organi-
zation’s Air Quality Guidelines WHO (2018).

2. Greenstone and Jack (2015) also note that market failures, such as the absence of credit or risk markets or perceptions
of political failures could be implicated in limiting public demand for environmental goods. Because we focus on mask
purchase behavior, we do not investigate these additional explanations, but refer the reader to that paper for additional
detail.

3. Ahmad et al. (2022) do not, however, demonstrate that information increases demand for air quality per se, a point we
return to later in this section.

4. The effectiveness of information provision on public demand for environmental quality has historical precedent. The
environmental movement in the United States is said to have been precipitated by a series of high-profile events including
Rachel Carson’s publication of Silent Spring and the Cuyahoga River in Ohio catching fire, among others. These events

2



expression of demand for air quality. In particular, misperceptions of social disapproval of tech-
nologies that limit pollution exposure or limited experience with improved air quality could also
dampen expressions of demand for clean air.

Assessing the credibility of these competing explanations raises several challenges. First, es-
timates of the demand for clean air among the urban populations that currently face the globally
highest levels of air quality are scarce. Second, understanding whether the demand for clean air
is limited by the candidate explanations above requires targeted interventions to relieve the effects
of information, peer disapproval, or limited experience with improved air quality.

To help answer these questions, this paper considers the demand for clean air and its drivers in
Delhi, India, a city of more than 25million people andwhere wintertime PM2.5 concentrations reg-
ularly exceed 120 𝜇g/m3, 24 times higher than the World Health Organization (WHO) guideline
of 5 𝜇g/m3. India, as of recently the largest country in the world, is an important place to under-
stand the demand for air quality. With GDP per capita just below $2,100 (World Bank, 2021), India
is a relatively low-income country. However, as a democracy with a robust set of pollution laws
at the national, state, and district level, its states and cities should be well-positioned to respond
to demand for air quality improvements. Understanding whether the provision of air quality is
limited by political constraints or by the degree to which citizens are demanding improvements is
an empirical question of policy interest.

We present the first experimental estimates of the demand for clean air, as revealed by individ-
ual decisions to purchase pollutionmasks, the primarymode of defense against the harmful effects
of air pollution in our study setting.⁵ We also examine how both our own experimental interven-
tions designed to rectify potential information gaps around air pollution and a city-wide program
designed to increase the use of pollution masks affect measured demand.

Between October 2018 and March 2019, a period coinciding with the peak air pollution season
in Delhi, we conducted a field experiment in which we repeatedly offered pollution masks at ran-
domly varying prices (0, 10, 30, and 50 Indian Rupees) to lower-income households in Delhi. We
focus on lower-income households in order to capture demand for air quality for a population that
is both understudied and more representative of the average Delhi resident.⁶ Using experimental
variation in prices combined with natural variation in ambient air pollution, we develop a discrete
choice model of mask demand to identify the marginal willingness-to-pay (MWTP), or demand,

contributed to a growing public awareness of the dangers of environmental pollution and provided public support for
nascent United States environmental policy (Shapiro 2022). More recently, Barwick et al. (2019) demonstrate that China’s
rollout of real-time air quality monitoring led to large increases in the degree to which individuals sought to avoid air
pollution.

5. Prior to the onset of COVID-19 in 2020, face masks were primarily associated with air pollution in Delhi. For example,
in one of the first public demonstrations for clean air in 2015, an Indian Member of Parliament wore a pollution mask into
the Indian Lok Sabha, garnering substantial media coverage (Times of India 2015).

6. In India and in many other countries around the world, poor households are have fewer options to defend against
air pollution (Banzhaf, Ma, and Timmins 2019), but little work of which we are aware studies preferences for air quality
specifically among lower-income populations.
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for clean air. We cross-randomized the variation in prices with additional experimental variation
in two more treatments (administered prior the mask offer), which we refer to jointly as the “non-
price interventions.” The first is an information treatment, which highlighted the long-run health
implications of high levels of air pollution, and the second is a peer belief treatment, which revealed
to the respondent that average levels of peer disapproval of mask-wearing are low.

We document three primary findings. First, we show that average demand for clean air is low
in absolute terms. On average, we measure a MWTP of $1.14 USD (23.0 INR) for a 10 unit (𝜇g/m3)
reduction in annual PM2.5 concentrations.⁷

Second, we document that providing information on the health impacts of air pollution leads
to a large increase in the demand for clean air. We show that respondents who are given a handout
and shown a short video discussing the long-run health impacts of air pollution before the mask
offer are much more responsive to the level of ambient air pollution when deciding whether to
purchase amask. For those respondents, we estimate aMWTPof $6.24 per 10 unit annual reduction
in PM2.5, more than five times higher than those respondents who did not receive the information
intervention.⁸

Third, we find that demand for clean air increases substantially with income and education.
Among informed respondents, moving from the 25th to the 75th percentile of household income
and individual years of school raisesMWTP by roughly 50% and 140%, respectively. Although low
in an absolute sense, after adjusting for household income and providing information, the MWTP
for clean air thatwe estimate nearlymatches an analogous estimate in Ito andZhang (2020), the only
other study of which we are aware to estimate demand for clean air in a lower-income country. We
also show that while the information treatment increases demand for air quality among both lower
and higher income respondents in our sample, its effects are concentrated among respondentswith
fewer years of schooling. This finding suggests that information provision is especially relevant in
contexts where education levels are low.

This study primarily contributes to the small body of work estimating demand for clean air
through revealed preferences. Appendix Table A.1 provides a summary of papers that estimate
the demand for air pollution reductions, obtained through both revealed and stated preference ap-
proaches. Numerical estimates of demand for clean air vary substantially by context, method, and
pollutant observed, but generally, studies have found households are willing to pay between $10
and $100 USD annually per unit of particulate matter reduced. ⁹ These studies have contributed

7. The experiment was conducted using Rupees, but in the paper we discuss the results primarily in USD to facilitate
comparison to other contexts where results have also been reported in USD. We convert Rupees to USD using the PPP-
adjusted exchange rate for 2019 reported by the World Bank: 20.13 INR = $1 USD.

8. In addition, we find little evidence of two other behavioral frictions inmask takeup: informing respondents that mask-
wearing in public is not widely disapproved of has no effect on mask demand, and prior experience using a mask actually
reduces the likelihood that a respondent will purchase another. This experiment was carried out prior to the onset of Covid-
19. In our piloting activities, a commonly cited reason for why people did not wear masks despite Delhi’s extreme pollution
levels was the fear of “looking strange.”

9. Chay and Greenstone (2005) find that an annual unit decrease in total suspended particulates is valued at about $19
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considerably to our understanding of the public’s value of clean air across the world. With few
exceptions, however, they rely on backing out information on preferences for clean air through lo-
cation or home purchasing decisions, which necessarily means that these estimates are derived by
examining cross-sectional relationships between location choices, air pollution levels, and the cost
of location decisions. This raises three important concerns. First, such cross-sectional relationships
could be confounded by other, difficult-to-observe factors that covary with both pollution and lo-
cation values, such as neighborhood desirability.¹⁰ The second concern, which applies across the
existing literature, is that estimating demand for clean air among low-income populations is virtu-
ally impossible using these approaches. Homes and large durable expenditures like air purifiers
are expenditures that are currently unavailable to most of the low-income urban populations that
face high levels of air pollution. Third and finally, in all cases the existing literature relies on ob-
served variation in home value, income, or the price of defensive expenditures against air pollution
to back out a monetary measure of the demand for clean air; we are not aware of any existing work
that leverages truly random variation to estimate the demand for clean air.

Our primary contribution to this line of research is providing the first experimentally-derived
estimates of the demand for clean air and by using experimental variation to examine how im-
perfect information and other market failures affect that demand. Importantly, this estimate of
demand focuses specifically on respondents living in low-income settlements in Delhi, India. The
key to our approach is that we combine unpredictable natural variation in local air pollution levels
with offers of pollution masks whose (subsidized) price we randomly vary across respondents.¹¹
As described above, Ahmad et al. (2022) provide evidence that is complementary with respect to
this paper: they show that information about future pollution increases respondents’ demand for
masks in Lahore, Pakistan, whereas this paper uncovers the demand for clean air in general. To the
best of our knowledge, ours is the first to directly estimate demand for clean air using any method
among a low-income population or in the country of India.

We also contribute to the literature on the takeup of defensive health technology in develop-
ing countries. In rural Kenya, two existing studies document limited demand, even at below-

(2019 USD) by housing markets in the United States. Bayer, Keohane, and Timmins (2009) directly model relocation de-
cisions using a discrete choice approach and find that the median household would pay $368–$457 (2019 USD) for a unit
decrease in PM10. Finney, Goetzke, and Yoon (2011) estimate a discrete choice model using data from households moving
into Riverside and San Bernardino counties. They find that middle-income households are willing to pay $51 (2019 USD)
to have 10% more days meeting air quality standards. Notably for our setting, they find that high-income households pay
more, while low-income households (by U.S. standards) have a negative willingness to pay. Outside of the United States,
Gonzalez, Leipnik, and Mazumder (2013) estimate a hedonic model and find a unit reduction in PM10 is valued at $48
(2019 USD) by residents of Mexico City. Freeman et al. (2019) estimate MWTP in China using discrete choice model similar
to Bayer, Keohane, and Timmins (2009) and derive a value of $29 (2019 USD) for a unit reduction in PM10. In the most
recent and similar setting to ours, Ito and Zhang (2020) compare variations in regional pollution in China with air purifier
purchases to derive a value of $1.34 USD (in 2020 dollars) for a unit reduction in household PM10 exposure per year.
10. Ito and Zhang (2020) are an important exception to this concern: because their estimate is derived from air purifier

purchases, they can control for unobservables at the location level.
11. This approach builds on previous non-experimental evidence from Greenstone et al. 2022 and Barwick et al. (2019)

that greater information on air pollution increases online searches for pollution masks and air purifiers.
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market prices, of mosquito nets and water filtration technology (Cohen and Dupas 2010; Kremer
et al. 2011). We provide an analogous estimate of the demand curve for pollution masks in India,
which allows us to project the social benefit of its free provision. We also add to this line of work
by experimentally quantifying the degree to which non-price considerations suppress demand.

This paper is organized as follows. Section 2 describes the background context and the sample
we study; Section 3 describes the experimental design; Section 4 presents a model of mask demand
and our methodology for estimating the MWTP for clean air; Section 5 presents the main empiri-
cal findings; Section 6 evaluates the subsequent government distribution campaign; and Section 7
discusses further implications.

2 Context

This section describes the study setting of Delhi, its air pollution problem and the countermeasures
available against it, and the composition of the sample from which we draw the respondent pool
for this study.

2.1 Delhi, India

Delhi, or the National Capital Territory (NCT) of Delhi, is the capital of India. Located in the north,
Delhi is one of its largest cities, with nearly 28 million people living in its metropolitan area. Delhi
is a relatively wealthy city relative to India as a whole, but still relatively poor by global standards:
GDP per capita of around $12,000 (Brookings 2015). Within Delhi, there are significant disparities
in income. Many of the lowest-income residents live in a category of low-income settlements areas
called Jhuggi Jhopri Settlements (informally known as “JJ clusters”).¹² By some estimates, nearly
half the city population resides either within a JJ cluster or other forms of temporary, low-income
settlements spread throughout the city (Times of India 2012).

The climate in Delhi is warm and subtropical, with the hottest temperatures usually occurring
between April and July, but even the coolest months, December and January, still have mean tem-
peratures around 15◦ C.

2.2 Air Pollution in Delhi

In 2019, the average PM2.5 concentration in the NCT of Delhi was 114.5 𝜇g/m3, nearly 23 times
the WHO guideline. Since 2015, Delhi has consistently ranked as one of these most polluted cities
in the world. The sources of air pollution in the area include transportation, industrial emissions,

12. Journalists, government officials, and some academic articles sometimes refer to these areas using the catch-all term
“slums”. In this paper, we describe the areas from which we sample respondents as either “JJ clusters” in the specific case,
or “low-income settlements” in the general case.
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electricity generation, residential emissions, and biomass burning, among others (Jalan and Dho-
lakia 2019). The relative importance of these sources varies seasonally. The winter months tend
to have the highest pollution levels as a result of seasonal biomass burning and meteorological
conditions.

At the time of our study in 2018, regulation of air pollution in Delhi was primarily conducted
through the Graded Response Action Plan (GRAP), where increasingly high levels of particulate
matter trigger a range of government responses. These can include bans on the use of diesel gen-
erators and fireworks, closing coal-fired power plants, limitations on construction activities, and
reductions on truck and automobile traffic (Chatterji 2021). In spite of these efforts, air pollution
levels have remained high in the winter seasons following the implementation of GRAP.

There are two modes of air pollution defense available to the average Delhi resident: air puri-
fiers and pollution masks. Due to the high upfront and operational cost of air purifiers, however,
ownership levels are low. In a survey of medium and high socioeconomic status (SES) Delhi house-
holds, Greenstone, Lee, and Sahai (2021) find that only 5% of households reported owning an air
purifier. In contrast, pollution masks are inexpensive and have been shown to filter more than 90%
of airborne particles (Langrish et al. 2012, Cherrie et al. 2018). At the time of this study, dispos-
able “N90/N95” masks cost roughly 100 Rs ($4.97), making them accessible to the majority of the
population, although their use is typically limited to two weeks of daily usage.¹³

Previous work indicates large potential increases in life expectancy would result if air pollu-
tion were reduced in Delhi. For instance, Burnett et al. (2018) calculate life expectancy impacts of
1.53 years for all of India, while Ebenstein et al. (2017) calculate that Delhi alone stands to gain a
collective 180 million years of life expectancy if PM2.5 concentrations were reduced to the WHO
standard. It is likely thatwithin the city there ismeaningful heterogeneity in exposure to these high
levels of air pollution; anecdotal reporting suggests that poor households, who often live in homes
that are poorly sealed to outside air, are exposed to substantially higher levels of air pollution on a
day-to-day basis (Wu et al. 2020).

2.3 Sample Composition

We study preferences for air quality by repeatedly surveying residents of low-income settlements
throughout the city of Delhi. The sample consists of individuals living in low-income neighbor-
hoods (𝑛 = 3,533). To construct the sample, we selected 324 “sampling points” at random from
among the JJ cluster areas. Fig. 1 maps the Delhi region and its wards, and the 324 sampling points
included in the study.

13. Pollution masks are are commonly used in response to high pollution episodes across the world. For instance, mask
purchases tend to increase during periods of heavy pollution (Zhang and Mu 2018). In addition, multiple governments
have undertaken mass mask distribution campaigns in responses to air quality crises, including in Malaysia (2019), South
Korea (2019), and the United States (2012) (see Table [A3]).
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[FIGURE 1 ABOUT HERE]

At each sampling point, hired enumerators surveyed adults at every other household with a
small survey incentive of 50 Rs ($2.48 USD). The sampling process was carried out between Oc-
tober and December 2018. To our knowledge, this construction results in the largest and most
representative sample of Delhi low-income settlements ever collected.¹⁴

Table 1 compares the characteristics of our sample to the Delhi and India averages, obtained
from the 2017-18 round of the Periodic Labour Force Survey (PLFS) administered by the Govern-
ment of India.

[TABLE 1 ABOUT HERE]

The average respondent was split equally between male and female, had a weekly income of
roughly 1100Rs per week ($2900 USD per year, PPP), completed 7 years of school, and was around
37 years old. On average, our sample has lower income and less education than Delhi residents
as a whole, but is more similar along these dimensions to the India average. Notably, few (17%)
respondents report ever having worn a mask prior to the intervention. This is consistent with
observations by the research team that relatively few Delhi residents are observed wearing masks,
even during periods of very high pollution.

3 Experiment Design

This section describes the field experimentwe ran to obtain the key parameters required to estimate
the demand for clean air. We first illustrate the timeline of the four rounds of the main experiment.
Second, we discuss the collection of demographic and health data. Third, we describe the ran-
domized interventions we used to test for the existence of informational failures affecting demand
for clean air. Finally, we describe the process we used to offer respondents masks at randomized
prices in order to elicit demand for pollution masks over the course of the study.

3.1 Timeline

Enumerators conducted repeated surveys with the originally sampled respondents in four rounds
over the course of our initial study, with each round spaced roughly two weeks apart. Fig. 2 shows
the timeline of experimental rounds against the ambient concentration of air pollution in Delhi
(PM2.5).¹⁵ Each dark gray tile represents one experimental round.¹⁶
14. Additional details on the sampling procedure are given in Appendix Section 1.
15. For the first two rounds starting in November 2018, all cells but the peer belief interventions were included and indi-

viduals were not re-randomized. In the third round, we re-randomized information and prices, and in the fourth round we
re-randomized information and prices and also added the final belief treatment.
16. Rounds overlapped because of the time required for enumerators to locate as many of the previously surveyed indi-

viduals as possible.
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[FIGURE 2 ABOUT HERE]

3.2 Survey Design

Within each experimental round, our survey proceeded in three stages. First, enumerators elicited
demographic and health information, as well as beliefs about air pollution and participation in
other defensive health actions. Second, the respondents in the non-price intervention arms were
provided with the corresponding interventions (first the PM2.5 health information then the peer
belief information, if applicable). Finally, enumerators offered respondents in the mask groups the
opportunity to purchase a mask for a subsidized price.

Respondents were surveyed on a rich vector of characteristics documenting socio-economic
status and short-term health outcomes. Socio-economic characteristics include age, gender, family
size, occupation, income, asset holdings, etc. Health outcomes include self-reported symptoms
(pollution and non-polluted related, randomly ordered), and administered biometrics by enumer-
ators including blood oxygen levels, blood pressure, and lung capacity.¹⁷ In addition, we asked
about beliefs regarding air pollution and past defensive health behavior (e.g., hand-washing, and
mask, helmet, and seat-belt usage).

3.3 Non-price Interventions

In order to both estimate the demand for clean air and the degree to which that demand is affected
by non-price limitations, the experimental design included several layers of randomized variation.
We varied the price that respondents were offered for masks and whether they were provided
with information on the health effects of pollution and/or data on the degree to which pollution
masks should expect to face social disapproval. Fig. 3 illustrates how survey respondents were
randomized across treatment arms.

The sample was split into three arms: pollution mask offers (hereafter mask arm), control, and
placebo. In round 1, individuals in the mask arm were randomly assigned to receive the informa-
tion treatment or not and were offered a pollution mask at a randomly assigned price 𝑝 of 0, 10,
30, or 50 INR ($0, $0.50, $1.49, or $2.48 USD). In round 2, those in the mask arm again received the
information treatment (or lack thereof) assigned in round 1 and were offered the mask at the same
price as in round 1. In round 3, those in the mask arm were re-randomized across information/no
information and were offered a mask at another randomly assigned price. In round 4, those in the
mask arm were again re-randomized across information/no information and also were randomly
assigned to receive the peer belief treatment (or not). They were offered a mask at another ran-
domly assigned price. Individuals in the control arm were randomly assigned to either receive

17. We chose these in particular as they are signals of broader cardiovascular health and are shown to be negatively
impacted by air particulate matter in the public health and medicine literature.
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information or not in round 1 and received the same treatment again in round 2. They were then
re-randomized to receive information or not in rounds 3 and 4. The placebo group was offered a
non-N90 mask in all rounds, never received the information treatment and randomly received the
peer belief treatment in round 4.

[FIGURE 3 ABOUT HERE]

In total, each respondent-survey was randomized into a total of 24 treatment cells¹⁸, depicted
in Table D.1. Appendices D.2 and D.3 conduct tests for balance and attrition during the experi-
ments. We find that baseline observables do not differ in meaningful ways across treatment arms
and rounds, and that the round-to-round attrition we observe does not occur differentially across
treatment arms.

We compare across treatment arms to identify demand for clean air and the degree to which
various interventions influence demand. First, we leverage the randomization of mask prices and
quasi-random variation in ambient air pollution to estimate the MWTP for clean air. Next, we test
to what degree information and peer beliefs lead to distortions in the demand we observe. Third,
we use the multiple randomizations of mask prices within the same customer to identify the effect
of prior mask takeup on future demand. Fig. 4 illustrates the materials used for the interventions.

[FIGURE 4 ABOUT HERE]

Information Treatment The information intervention consisted of two components designed to
reduce knowledge gaps on the harm air pollution causes to human health: a printed handout,
documenting the same as well as information on pollution-avoidance activities and a short, two-
minute video on the health effects of air pollution. Both were developed and constructed by the
research team in Delhi and presented in Hindi. In other settings, similar market failures have been
found to bias estimates of demand for environmental goods towards zero. For example, Ito and
Zhang (2020) find that MWTP for clean air is higher after government information interventions,
suggesting that prior to the intervention, individuals were undervaluing clean air. Fig. 4 docu-
ments the handout in (a1) and stills from the video in (a2). At the time of intervention, the video
was played in front of the enumerator to ensure the respondent’s attention and audible sound from
the video. The handout was then given to the respondent and the enumerator read over each por-
tion out-loud. Both the video screening and the out-loud reading of the handout were to ensure
comprehension even among illiterate respondents. By comparing those with and without the in-

18. Cell probabilities were uniform as this experiment was repeated over four rounds, with re-randomizations and in-
terventions included at different stages. As described above, some respondents could be represented in more than one
treatment arm, since they might receive different randomized price offers or information treatments in different rounds. In
addition, we oversampled the control group that did not receive information and the group that received both information
and a free mask offer to increase statistical power for detecting health impacts.
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formation intervention, we are then able to measure the effect of updating knowledge about the
health effects of air pollution on demand.

Peer Belief Treatment Pollution masks were unusual at the time of the study (i.e., prior to the
COVID-19 pandemic), and anecdotal reports indicated that many residents internalized a social
stigma against wearing them in public, though these same residents also reported that they them-
selves did not stigmatize others who wore masks. Similar to Bursztyn, González, and Yanagizawa-
Drott (2020), our strategy to correct this potential distortion of demand for masks was to first mea-
sure actual perceptions of masks and then to reveal that the true percent at random to survey
respondents.¹⁹ In the third round of our survey, we displayed pictures of an individual wearing
a mask to respondents in our control group, and asked “does this person look strange?” ²⁰ On
average, 36% said yes, they thought masks looked strange.

In the fourth round of the experiment, we again asked respondents whether they thought the
person wearing a mask in the image looked strange. Then, we update treated respondents with
the fraction of peers that believe masks look strange. Specifically, we stated the following, prior to
the mask offer:

[English-translated]Did you know that only 36% of your peers believe thatmasks look strange?

By comparing those with and without the peer belief intervention, we are then able to measure
the effect of updating peer beliefs on demand.

3.4 Pollution Mask Offer

We procured thousands of high-quality, low-cost pollution masks from well-known manufacturer
3M. The mask model we offer (3M 9001V, depicted in Appendix Figure A6) is KN90 certified: tests
from the manufacturer ensure that these masks filter 90% of PM2.5 particles.²¹ Informal tests of us-
age suggest that masks such as these can last for roughly 2 weeks of daily usage in high-pollution
environments (Talhelm2017), and low-cost 3Mmasks have been shown toprovide cardio-respiratory
benefits even after 1 day of usage in Beĳing among those with pre-existing conditions (Langrish
et al. 2012).

19. Bursztyn, González, and Yanagizawa-Drott (2020) show that men in Saudi Arabia generally support women working
outside the home, but underestimate the degree to which other men do so as well. They show that providing men with
correct information regarding the actual degree of support leads them to increase their support for their wives’ job-search
efforts.
20. We showed three images in total to each respondent: one of a person wearing sunglasses, the second of a person in a

masks, and the third having green hair. 27, 36, and 87% responded yes, respectively. The bottom panel of Fig. 4 includes
the three images.
21. Cherrie et al. (2018) provide empirical tests of thesemanufacturer claims. They find thatmost pollutionmasks perform

better than advertised, i.e., they filter a higher proportion of particulates than is claimed by manufacturers.
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We offered masks to respondents at the end of the survey after administering the non-price
interventions. To ensure the effectiveness of masks were communicated to each respondent, we
stated the following at the time of the offer:

[English-translated] This is an N90 pollution mask manufactured by 3M. According to 3M,
this mask will block 90% of particulate matter (PM) air pollution. Would you be willing to buy
the mask at [0/10/30/50] rupees?

If the respondent agreed, then she paid the enumerator and received the new mask immediately.
To capture a large portion of the demand curve, we randomized prices to be either 0, 10, 30 or 50
Rs (approximately $0,$0.50, $1.49, or $2.48 USD). All of these prices represented some degree of
subsidization, since masks were typically available in the retail market for 100 Rs.

4 Model and Estimation

This section describes the procedure we use to estimate the demand for clean air using observed
takeup of pollution masks in response to randomized prices and variation in pollution exposure
over time. We start with a model of the choice of whether to purchase a pollution mask in order
to illustrate the method to back out demand for clean air. We then discuss how we estimate this
model and test for the existence of several possible market failures that could limit the demand for
clean air that we measure.

4.1 Model of Mask Purchase Decision

Individuals weigh the cost of the mask purchase against the protection from pollution they expect
to obtain from it. The utility of amask purchase by individual 𝑖 in round 𝑡 is given by 𝑢𝑖𝑡 , a function
of the price faced by the individual 𝑝𝑖𝑡 , the expected reduction in air pollution exposure EPR𝑖𝑡 , and
an error term 𝜖𝑖𝑡 :²²

𝑢𝑖𝑡 = 𝛼 − 𝛽𝑝𝑖𝑡 + 𝛾1EPR𝑖𝑡 + 𝜂𝑋𝑖 + 𝜖𝑖𝑡 (1)

The utility of mask purchase falls as its price rises and increases when expected pollution is
higher, i.e., both 𝛽 and 𝛾 are positive. They are also the partial derivatives of 𝑢𝑖𝑡 with respect
to expected pollution and price: 𝜕𝑢𝑖𝑡

𝜕EPR𝑖𝑡
= 𝛾1 and 𝜕𝑢𝑖𝑡

𝜕𝑝𝑖𝑡
= −𝛽. Since purchasing a mask reduces

22. An alternative formulation, following Train (2009), wouldmodel the mask purchase as a decision that increases utility
but reduces the respondent’s available income for other expenditures. In the setting we study, the two yield equivalent
formulations for the demand for clean air, but the model we present here does so more parsimoniously. Readers should
also note that this model is an individual-level panel analogue of the aggregated market-level models described in Ito and
Zhang (2020) and Deschenes, Greenstone, and Shapiro (2017).
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income, the negative of the ratio of these two is the marginal willingness-to-pay (MWTP) for a 1
unit reduction in pollution, or the demand for clean air:

MWTP = −𝜕𝑢𝑖𝑡/𝜕EPR𝑖𝑡

𝜕𝑢𝑖𝑡/𝜕𝑝𝑖𝑡 =
𝛾1

𝛽

In words, the strategy we use to uncover the demand for clean is to compare how individuals
change mask purchase behavior in response to (1) randomized price variation (represented by 𝛽)
and (2) as-good-as-random variation in expected pollution levels (represented by 𝛾1).

Perfect Information Assumption Implicitly, this model of mask demand assumes individuals
have perfect information on how air pollution affects their utility denoted by 𝛾1. Under this as-
sumption, if individuals were provided education on the health consequences of air pollution
Information𝑖 , we would expect 𝛾 to be unchanged. Utility is therefore assumed to be:

𝑢𝑖𝑡 = 𝛼 − 𝛽𝑝𝑖𝑡 + 𝛾1EPR𝑖𝑡 + 𝛾2EPR𝑖𝑡 × Information𝑖 + 𝜂𝑋𝑖 + 𝜖𝑖𝑡 (2)

where 𝛾2 = 0 under full information. Estimating this interacted model with a randomized infor-
mation intervention thus serves as a test against this assumption.

4.2 Estimation

Because we do not directly observe EPR𝑖𝑡 , each individuals’ expected reduction in the level of pol-
lution from the mask purchase, we construct a proxy that is the product of recent pollution levels,
the advertised effectiveness of the mask they are offered, and an estimate of the amount of time
they will be using the mask. We then write EPR𝑖𝑡 as follows:

EPR𝑖𝑡 = PM𝑖𝑡︸︷︷︸
Expected PM2.5 Level

× 0.9︸︷︷︸
Mask Efficiency

× EU𝑖𝑡︸︷︷︸
Expected Usage

(3)

For PM𝑖𝑡 , we assume that expectations about the ambient air pollution level in the near future
are informed by air pollution levels in the recent past.²³ Specifically, at the time of the mask of-
fer, we compute the preceding seven-day mean pollution level that is spatially averaged across the
city.²⁴ We use the Delhi average instead of residence-specific location for two reasons: first, indi-

23. Fig. 6 belowprovides supporting evidence for this assumption: as pollution swingsweek-to-week, local news responds
in-kind, suggesting that information on air pollution is relatively salient in our sample period.
24. Data on ambient PM2.5 concentrations collected by a network of monitors across the city operated by the Delhi Gov-

ernment’s Central Pollution Control Board (CPCB). These data captures high-quality, near real-time PM2.5 readings over
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viduals may commute or travel throughout the city in any given day, so measuring air quality at
the residence may not fully capture total exposure; and second, using purely temporal variation in
the Delhi mean helps mitigate endogeneity concerns explained in detail below. We provide results
using alternative specifications of pollution in the Appendix, with qualitatively similar findings.

Mask efficiency is fixed at 90%, which we take as given since it is a manufacturer claim of the
product we distribute (it is also stated at the time of offer). For EU𝑖 , we leverage the reported
mask usage data (of those that take-up) we collect as part of the experiment.²⁵ Our followup data
indicates that individuals use masks for 8 days with an average of 1.8 hours per day during the
study period.

For estimation, we replace EPR𝑖𝑡 with pollution level PM2.5𝑡 in Eq. (1) and then convert it into
appropriate units following Eq. (3). To allow users who receive the information treatment to re-
spond differently to pollution levels, we also interact PM2.5𝑡 with the randomized information
treatment Information𝑖𝑡 . The resulting coefficients on PM2.5𝑡 , 𝛾1, is the effect of pollution mask
demand among the uninformed group, while 𝛾1 + 𝛾2 is the effect for the informed group. The
information treatment only enters the utility function through its effect on responsiveness to pol-
lution levels, since additional information about the health effects of pollution should not change
either individuals’ value of money (the price coefficient) or their mask purchase choice when pol-
lution is at zero.

Estimating Equation The discrete choice model implies that individuals takeup (or purchase) a
mask if the utility of the mask purchase 𝑢𝑖𝑡 > 0:

Takeup𝑖𝑡 = 1{𝛼 − 𝛽𝑝𝑖𝑡 + 𝛾1PM2.5𝑡 + 𝛾2PM2.5𝑡 × Information𝑖𝑡 + 𝜂𝑋𝑖 + 𝜙𝑠𝑡 + 𝜖𝑖𝑡 > 0} (4)

To absorb variation in the error term, our preferred specification includes controls 𝑋𝑖 , which
we select using the double-LASSO method (Urminsky, Hansen, and Chernozhukov 2016), tak-
ing 𝑝𝑖𝑡 and PM2.5𝑡 as the focal independent variables. We similarly include surveyor-by-round
fixed effects 𝜙𝑠𝑡 . We assume that 𝜖𝑖𝑡 follows a type-1 extreme value distribution and estimate the
model with maximum likelihood (Logit). All specifications use three-way cluster standard-errors
by sampling point-round (the randomization unit for the price of themask), date (the unit at which
pollution levels are assigned), and respondent (as respondents are surveyed in multiple rounds)
(Abadie et al. 2022; Cameron, Gelbach, and Miller 2011).²⁶

42 monitors spread across the city. We assign each household to their sampling point, from which households are chosen
nearby. We then take the network of hourly PM2.5 readings and interpolate values across time and space using a Gaussian
process regression (kriging) as in Wong, Yuan, and Perlin (2004). Using this panel of pollution measurements by sampling
point and day, we average across sampling points to obtain a single Delhi-wide average pollution reading per day. We then
link each survey with the 7 day mean Delhi pollution level preceding the date of the survey.
25. Appendix Section 4 describes a model of optimal mask usage and survey data that is consistent with the assumption

that expected usage is the same for those who do and do not take up masks.
26. In Appendix H, we perform several robustness tests including alternative fixed effect specifications, alternative win-
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Measuring MWTP and Testing Against Full Information By re-scaling model parameters from
Eq. (4), we can estimate the MWTP for clean air, which we characterize as the WTP for a 1𝜇𝑔/𝑚3

reduction in annual PM2.5, separately for those with and without the information treatment:

MWTP|Without Information =
𝛾1

𝛽
× 1

0.9
× 24

1.8
× 365

8
, (5)

MWTP|With Information =
𝛾1 + 𝛾2

𝛽
× 1

0.9
× 24

1.8
× 365

8
.

The first term in each expression the marginal rate of substitution between weekly pollution
and prices, and the third, fourth, and fifth terms reflect the mask efficiency, mean usage hours per
day, and day-to-annual scaling, respectively. To examine the welfare gains of pollution reduction
policy, this MWTP estimate can then be scaled by changes in annual pollution levels required to
meet national and international health standards. Finally, a sufficient test against a full information
assumption is whether 𝛾2 = 0.

Other Frictions in Mask Takeup Beyond imperfect information in the MWTP for clean air, there
may exist other frictions that could suppress takeup of these defensive investments. These may
include, for example, beliefs about peer disapproval of mask-wearing in public or a lack of prior
experience with masks. To assess this, we specify a richer discrete choice model than that given
by the benchmark Eq. (4). To examine whether beliefs about disapproval of mask-wearing are
suppressing demand, we add Peer Belief𝑖𝑡 , an indicator for respondents in round 4 who were in-
formed about the relatively low proportion (37%) of previous respondents who findmask-wearing
unusual. To examine whether masks are an experience good, we test whether past mask usage dis-
torts current mask demand. More specifically, we let Past Takeup𝑖𝑡 be whether 𝑖 took up a mask
offer in any prior round or had worn a mask before the experiment started, which we will call their
takeup in round 0.²⁷ In other words: Past Takeup𝑖𝑡 = max

{
{takeup𝑖 𝑗}𝑡−1

𝑗=0

}
. Including this term in

the specification with distortions yields:

Takeup𝑖𝑡 = 1{𝛼 − 𝛽𝑝𝑖𝑡 + 𝛾1PM2.5𝑡 + 𝛾2PM2.5 × Information𝑖𝑡 + (𝜂 + 𝜉)𝑋𝑖+
𝜃1Peer Belief𝑖𝑡 + 𝜃2Past Takeup𝑖𝑡 + 𝑐𝑖 + 𝑒𝑖𝑡 > 0} (6)

Identification of 𝜃1, the impact of the peer belief intervention, is straightforward. However, the
identification of 𝜃2, the effect of previous experience wearing a mask, requires some additions to

dows for which we define pollution, and reweighting observations to account for attrition. Our qualitative results are
unchanged.
27. We specify round 0 as being before the experiment started, as opposed to our first round, for 2 reasons: (1) It provides

an intuitive understanding of the coefficient 𝜃2 in Eq. (6) as the causal effect of ever having worn a mask previously on
current demand, and (2) it allows us to make use of our full sample instead of having to drop the ∼17% of respondents with
only one experimental round.
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the empirical approach. Since Past Takeup𝑖𝑡 is potentially a function of an unobserved individual
characteristics or of other persistent correlates within the error term, including it directly in the
estimating equation could bias 𝜃2 upward. We solve this problem by instrumenting past takeup
with the minimum price of all past offers made to the survey respondent. The logic of this strategy
is that previous price offers, which are given at random, are uncorrelated with any unobserved
correlates of mask demand. We use the minimum of these price offers since it has the strongest
relationship with past takeup. Appendix G.2 discusses this approach in greater detail.

4.3 Identification

Our estimates of MWTP relies on the causal identification of two key parameters 𝛽 and 𝛾. The
demand response to prices 𝛽 is identified through the random variation in prices employed in our
experimental design.

The demand response to air pollution 𝛾 is driven by a combination of the randomized timing
of each survey with temporal variation in average pollution levels in Delhi. After controlling for
round fixed effects, our estimates are identified from day-to-day swings in air pollution in the city
within each survey round of roughly 4-6 weeks. The round fixed effects capture seasonal patterns
of air pollution that may be correlated with unobservables.

A common threat to identification of 𝛾 is the endogeneity of individual characteristics with air
pollution (e.g., due to sorting, high income respondents have systematically higher demand but
lower pollution levels, which may bias 𝛾 downward). Because the variation in pollution we use
is purely week-to-week (averaged across the city), fixed observed and unobserved characteristics
of respondents are uncorrelated with this pollution variation and will not bias our estimates of
MWTP.

Themodel estimate ofMWTP is identified from substitution patterns betweenweekly variation
in ambient air pollution and the price for pollution mask offers. Under the identification assump-
tions, any non-price or non-pollution determinants of demand will be captured in the error term
and will not affect MWTP. For example, some users of pollution masks may find them uncomfort-
able or bad looking. So long as the degree of discomfort is not driven by the price paid for a mask
or the ambient pollution level, these featuresmay shift levels ofmask demand but will not influence
the marginal rate of substitution between prices and pollution exposure (MWTP).

5 The Demand for Clean Air

This section documents the demand for clean air among our sample. We begin by estimate demand
for the pollution masks among the sample. Next, we use the model from the previous section to
infer demand for clean air from the responsiveness of mask purchase with respect to price and
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ambient PM2.5. We then test for non-price limitations that may limit the expression of the demand
for clear. We conclude the section bydocumenting how the demand formasks changeswith respect
to income, education, and gender.

5.1 Demand for Pollution Masks

Before proceeding to our estimates of the demand for clean air, we first document the underlying
estimates of the demand for masks in our sample. Fig. 5 shows how the average probability of
takeup varies with price, pollution level, and across respondents who did and did not receive the
information treatment.

[FIGURE 5 ABOUT HERE]

Panel (a) shows that just under 80% of respondents take a mask when it is offered for free. At
positive prices, demand for masks is relatively low. At a price of $0.50 per mask, just over 30% of
respondents purchase. That figure falls to around 15% at $1.49 USD and 10% at $2.48 USD. This is
consistent with low rates of mask usage in this setting. Overall, at these observed levels of demand,
this suggests masks provide limited value for recipients.²⁸

Panel (b) documents how mask purchase choices vary with the level of pollution that day. We
find that pollution levels increase demand formasks. During lowpollution days –when PM2.5 con-
centrations are in the lowest quartile (50-100𝜇𝑔/𝑚3) – just under 30% of the respondents purchase
amask. During high pollution days in the highest quartile (>210𝜇𝑔/𝑚3), over 40% purchase. Panel
(c) separates average takeup with respect to pollution by respondents that did and did not receive
the health information treatment before the mask offer. We find that providing information leads
to an increase in the likelihood a respondent purchased a mask.

The descriptive facts captured in Fig. 5 indicate that the respondents, who come from some
of Delhi’s poorest areas, value the protection from air pollution offered by pollution masks. That
levels of demand decline to close to zero as the price increases is consistent with the low levels of
mask usage observed in everyday life. They also demonstrate that mask usage is responsive to the
threat of air pollution. These facts are consistent with the assumptions of the model and preview
the formal analysis to follow in Section 5.2. The final panel provides descriptive evidence that
information problems may be an important factor in determining demand for masks, a suggestion
we return to in Section 5.3.
28. Indeed, we find that those who takeup masks use them for less than 2 hours per day and find limited effects of mask

takeup on observed health outcomes. In a subgroup analysis detailed in Appendix I, we leverage the control group that
received no mask offers to examine whether mask uptake leads to measurable health improvements. In general, we do not
find evidence that mask takeup improves several short-term health outcomes 2-4 weeks after treatment.
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5.2 Demand for Clean Air

To estimate the average demand for clean air across the sample, we employ the logit model de-
scribed by Eq. (4). Table 2 documents the results. The outcome variable is whether or not a re-
spondent purchased a mask during that round. The first panel includes the model coefficients on
the price of the mask, the level of pollution that day, and the level of pollution interacted with an
indicator for the information treatment. The second panel uses the estimates to compute the de-
mand for clean air, which we characterize as the MWTP per annual unit of PM2.5 for the average
respondent. The “Information = 0” row is the MWTP for respondents who did not receive the
information treatment, and the “Information = 1” row is the MWTP for respondents who did.

[TABLE 2 ABOUT HERE]

Column (1) estimates a benchmark logit model that includes only the effects of price, pollution,
and pollution interacted with a treatment indicator for respondents placed into the information
group, as well as surveyor-by-round fixed effects. Increases in price reduce the demand for masks,
while ambient pollution does not significantly impact it for respondents who did not receive the
information treatment. By contrast, respondents who do receive the information treatment become
more likely to buy a mask when pollution is high. We combine these estimates following Eq. (5)
to obtain the demand for clean air across the two groups. We find a sharp divergence in MWTP
for clean air among respondents who did not and did receive the information treatment. Baseline
respondents have an MWTP of $1.92 per 10 unit reduction in annual PM2.5 that is imprecisely
estimated and not statistically distinguishable from zero. By contrast, respondents treated with
information are willing to pay $7.28 for each 10 unit reduction, an estimate that is more precisely
estimated and statistically different from zero.

Column (2) adds the double-LASSO controls following Urminsky, Hansen, and Chernozhukov
(2016) and is the preferred specification.²⁹ The point estimates do not change substantially. MWTP
for clean air in this specification is $1.14 (and not statistically distinguishable from zero) for indi-
viduals who do not receive the information treatment. For those who do receive the information
treatment, MWTP is $6.24, a nearly six-fold increase in the point estimate.

Column (3) is a sensitivity check that allows the information treatment to enter the utility func-
tion directly. As discussed in Section 4, this is not the preferred specification because it requires
that respondents value information about air pollution even when the level of air pollution is zero.
We include the specification here for completeness. As might be expected, including information
in this (arguably) mis-specifiedway adds noise to the estimate, of the effect of ambient air pollution

29. The double-LASSO procedure selects the following controls: Female, Age, asinh(Personal Income), Years of school,
Occupation is driver, Owns bike or car, Has Air Conditioning, Asbestos roof, In the last week had pollution symptoms,
In the last week had non-pollution symptoms, In the last week had burning eyes, In the last week had joint pain, In the
last week had numbness or tingling in hands, In the last week had vision impairment, Wears a helmet or seatbelt when in
vehicle, and Has worn a mask ever.
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on the purchase decision. The overall result is a near-zero estimate of MWTP for clean air among
the respondents who do not receive information, as before. and a slightly larger ($0.67) but less
precise point estimate of the difference in MWTP for clean air between those who did and did not
receive the information treatment.

Columns (4) and (5) estimate linear probability models. Column (4) is the LPM analogue of
column (2), and the estimates are virtually identical. In column (5) we introduce individual fixed
effects, which are not estimable in the logit approach due to incidental parameter limitations. The
qualitative findings regarding demand for clean air are identical to the preferred specification: de-
mand for clean air is near-zero for individuals in the baseline treatment, and substantially larger
and statistically different for those that receive information. We show in Appendix H that these
results are qualitatively robust to alternative fixed effect specifications, alternative windows for
which we define pollution, and reweighting observations to account for attrition.

In general, we find the the demand for clean air is low in absolute terms among the sample
we study: for respondents who are provided information on the health impacts of clean air prior
to demand elicitation, we measure a MWTP of $6.24 per 10 unit reduction in annual PM2.5. This
is around 27% of the estimate in Ito and Zhang (2020) and well below comparable estimates in
wealthier countries given inAppendix TableA.1. We return to the question ofwhether this estimate
is low in a relative sense, i.e., in comparison to income, in Section 5.4.

5.3 Effects of Peer Beliefs and Prior Mask Usage on Mask Demand

Beyond information frictions in the MWTP for clean air, there may be other limitations that could
suppress takeup of these defensive investments even conditional on MWTP. Accordingly, we test
for two additional potential biases that could limit respondents’ likelihood of mask purchase and,
as a result, our measure of their demand for clean air. First, we examine whether mask purchasing
could be suppressed by beliefs about peer judgement of wearers. Second, we test whether the
respondents may become accustomed to masks over time, i.e., if masks are a type of “experience
good”. We estimate Eq. (6) to incorporate the test of the peer belief intervention and the effect of
having experience with a mask into the discrete choice model. Table 3 documents the findings.

[TABLE 3 ABOUT HERE]

Column (1) reproduces the second column in Table 2 for comparison. The next two columns
add the peer belief treatment and the instrumented measure of previous mask usage described
by Eq. (6) sequentially. In column (2), we find that informing respondents about the low level of
disapproval regardingmask usage in public does not shift themask purchase decision. Column (3)
shows that prior experience with masks actually reduces demand in our experiment. We interpret
this finding as evidence that, if there is an experience effect of using masks, it is either negative
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or more than fully compensated by respondents’ continued use of the previous masks. In either
case, we do not find strong support for the contention that merely exposing users to the benefits
of mask usage is a sufficient policy step to generate widespread adoption, nor do we find that
it substantively influences demand for clean air. This finding suggests that large-scale programs
of mask distributions will have, at most, temporary effects on usage, a question we return to in
Section 6.

To summarize, our pooled estimates indicate that the low-income population we study in Delhi
has zero detectable demand for clean air in the absence of information provision.³⁰ When informa-
tion is provided prior to mask purchase, demand rises substantially and is statistically larger than
zero. For the remainder of this section, we focus primarily on respondents in the information con-
dition, since we view that condition as most reflective of the benefit a fully-informed respondent
perceives for reductions in PM2.5.

However, even the mean estimates under the information condition are comparatively low in
global terms: we measure an average MWTP per annual 10𝜇𝑔/𝑚3 PM2.5 of over $6 USD. In the
following section, we examine whether the demand for clean air is correlated with income, gender,
and education levels to better understand the source of both the increases due to the information
treatment and differences in income.

5.4 Correlates of the Demand for Clean Air

India, like many developing countries, is experiencing rapid demographic change. As the popula-
tion urbanizes, average levels of income and education are increasing, and women are becoming
more involved in the workforce. This section documents to what degree key demographics pre-
dict heterogeneity in demand for clean air. We estimate how MWTP varies along three important
dimensions: income, education, and gender. Theory and evidence suggest that demand for envi-
ronmental quality increases with income. Second, education is a measure of permanent income
and information failures are likely to be concentrated among those with low levels of human cap-
ital. To estimate how these differences relate to MWTP, we allow key model parameters to vary
by household income, education, and gender measured at baseline (full estimation details are re-
ported in Appendix G.1).

Because income, education, and gender are not randomly assigned, we interpret these as es-
timates of the demand for clean air conditional on individual characteristics. Table 4 reports our
findings at specific fixed levels of income, gender, and years of schooling.

[TABLE 4 ABOUT HERE]

30. In Appendix I, we also report on whether mask receipt, driven by randomized mask pricing, led to meaningful im-
provements in reported health outcomes two to six weeks later. We do not find evidence in support of this hypothesis.
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For household income, we find that estimates of the demand for clean air increase with income,
though the degree of this increase is limited. We predict demand for clean air at household income
levels of $0, $10,000, and $18,000 USD. Estimated MWTP for clean air increases from around $0 to
$5.1 for respondents in the uninformed condition (though none of these estimates are statistically
different from zero), and up to $11.5 for informed respondents. We also find that female respon-
dents have lower estimated demand for clean air thanmen, and that the effects of information seem
to be centered on these female respondents.

Finally, we find that education levels have a strong positive association with the demand for
clean air, but the strength of that association falls if respondents are informed about the health
effects of pollution. Among respondents with little or no education, demand for clean air is neg-
ative and not statistically different from zero in the no-information condition, but around $3.40
USD if respondents are informed. Among respondents with eight years of schooling, uninformed
respondents have a positive (but still statistically zero) demand for clean airwhile informed respon-
dents are willing to pay around $7.30. Respondents with a full fifteen years of schooling report the
highest levels of demand for clean air in our sample at $12.70 in the uninformed condition. Most
notably, for these respondents, information has virtually no effect. This finding is consistent with
well-educated respondents already having fully internalized the health costs of air pollution in
their decisions to protect themselves, and suggests that policies targeting information on the health
impacts of air pollution might be most fruitfully targeted towards lower-education households.³¹

6 Interpretation: Delhi’s 2019 Mask Distribution Program

Our findings to this point document that demand for clean air is low among the sample of low-
income households we study, but that it is substantially larger when those households are treated
with information about the health impacts of air pollution. We also find that demand for masks
is insensitive to a treatment that reports low levels of disapproval of mask wearing to respondents
and that it is actually reduced by prior experience with masks. Finally, we show that respondents
with higher incomes are more likely to value clean air, and that information provision appear to be
a substitute for increasing levels of education when it comes to the determination of the demand
for clean air.

However, our study is necessarily limited in the sense that we could only administer treatments
that were randomized by respondent; the nature of the research design means that it was not pos-
sible to, for example, treat entire communities with the opportunity to purchase a mask or with
an information campaign to (potentially) shift community-wide beliefs about mask-wearing and
its benefits. In that case, one possible explanation for our findings is that interventions at the indi-

31. These patterns of heterogeneity across each covariate are qualitatively robust to controlling for interactions with other
covariates as described in Fig. G.1.
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vidual level are insufficient in the face of a strong no-mask norm among most of the population.
In this case, it is possible that a larger public health effort to popularize masks might lead to large
effects on mask usage, either by providing a more credible source of information on their benefits
or by reducing the strength of anti-mask wearing norms.³²

6.1 2019 Mask Distribution Campaign

Coincidentally (with respect to this study), the Delhi government rolled out a large public health
campaign to distribute five million pollution masks across Delhi a few months after we concluded
our initial data collection described above. This policywas unprecedented at the time andprovided
masks to nearly a quarter of the residents of the city. This rollout, however, was limited to Delhi
proper, and did not include its neighboring cities. We make use of this feature of the policy to
estimate standard difference-in-differences models using the rollout timing and the treated (Delhi)
and control (non-Delhi, or the cities of Noida and Gurgaon) areas as our combined sources of
variation.

The rollout included a significant media campaign, captured notably by the Twitter post, doc-
umented in Appendix Fig. J.1 by Chief Minister of Delhi Arvind Kejriwal. On November 1st 2019,
the Delhi began distributing 5 million N95 pollution masks to a network of government and pri-
vate schools in the city of Delhi (but not outside), with the intention of providing masks to 1 in
4 individuals in the city. Children attending schools received two masks, which they were told
to bring home and give to their head of household. Fig. J.1 depicts a Tweet by the Chief Minister
describing the mask distribution, showing the packet of two N95 masks that was given to children
during this campaign. Appendix Table A3 lists past mask distribution campaigns implemented
by government entities around the world (as of November 2019), the largest of which is the Delhi
campaign.

6.2 Survey Procedure

In anticipation of this distribution, we surveyed respondents at bus stops in the cities of Delhi
(treated), Gurgaon, and Noida (untreated), a few weeks before and several weeks after the distri-
bution date, and provide mask offers (randomized at $0.50 and $1.49) and the health information
intervention.³³ Because the respondents were largely commuting to work, the sample is primarily
employed men. In general, the Delhi and non-Delhi samples are similar to each other (the Delhi
sample has slightly higher income and more education). Compared to our main sample, this sam-

32. In fact, several such interventions have been implemented inMalaysia, South Korea, Singapore, the United States, and
elsewhere. See Table C.1.
33. Appendix Figure J.2 shows a map of all bus stops within Delhi as well as outside the city in neighboring areas of

Gurgaon and Noida we were able to survey (dots). In Appendix Table A1 and A2, we describe this sample, split between
the Delhi and the non-Delhi sample (for two different location definitions).
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ple captured a larger share of working men. By some metrics, Delhi’s public bus system captures
nearly 60% of total transportation demand in the city (Planning Department, Government of In-
dia). This sample is thus largely representative of working adults on the lower half of the income
distribution.

In addition to mask offers, we also collect self-reported mask usage and individual character-
istics. In order to track the rollout of masks, we also survey administrators from a sample of more
than 600 schools (across Delhi and non-Delhi) around the distribution period to collect the date of
first mask receipt from the government.

Finally, we scrape tweets from the top 50 news outlets in the Delhi region, which re-post head-
lines of articles in print and online. Roughly 40% of all Indians across the income distribution read
print newspapers at a regular basis (India Readership Survey). We categorize these Tweets by pars-
ingwhether the text contains pollution-related keywords. We interpret this as a proxy for exposure
to local information related to air pollution.

Because the government mask distribution campaign occurred inside the city of Delhi and not
outside (Gurgaon and Noida), we are able estimate the effects of the policy with a “difference-in-
differences” approach: comparing surveys from respondents in treated and untreated cities, before
and after the treatment date.

6.3 Effects of the Campaign

If the impediment to mask-wearing is insufficient credible information or a strong anti-mask social
norm, then a large-scale government-funded intervention is likely the best policy instrument to
reduce this frictions and encourage widespread mask adoption. A successful policy should lead
to both raised awareness and increased long-run usage of masks.³⁴ In this section we examine
the effects of the campaign in Delhi by comparing responses from commuters in Delhi to those in
neighboring Noida and Gurgaon (where masks were not distributed).

We begin by showing that the intervention was indeed effective in providing masks and in
raising social awareness of masks. The first panel of Fig. 6 shows the proportion of schools in each
area that receivedmasks. We sampled over 600 schools across bothDelhi andNon-Delhi and called
their administrators to inquire on when they received masks from the government and distributed
to children. We plot the cumulative distribution of these over time. We see that within 4 weeks the
distribution campaignwas fully rolled out in Delhi, while not a single school inNon-Delhi received
government masks. This suggests that Delhi residents received a large quantity of masks during
peak episodes of air pollution, while residents just outside the city did not.

[FIGURE 6 ABOUT HERE]

34. Barwick et al. (2019), in related work, find that simply making pollution information available led to changes in the
degree to which individuals seemed to protect themselves from its effects in China.
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In the second and third panels, we plot weekly averages from our repeated cross-sectional sur-
veys of nearly 3 thousand respondents in both Delhi and Non-Delhi. In the seconds panel, while
pre-trends are both parallel and overlapping, we see that self-reported mask usage (fraction of re-
spondents that report usingmasks that day) increases in Delhi after themask distribution date and
falls back to the Non-Delhi placebo. At its peak, magnitudes are large and statistically significant,
where by late November the fraction in Delhi is twice that of Non-Delhi. In the third panel, we see
that the demand for masks (fraction that take subsidized mask offers) is statistically equal between
Delhi and Non-Delhi both before and after the mask distribution campaign.

In Appendix J.2, we present difference-in-difference estimates. We also report estimates for
different definitions of treatment assignment (neighborhood of bus stop vs. of residence), which are
qualitatively similar. Our preferred estimates using the home (residence) definition are consistent
with the descriptive patterns above, with self-reported usage increasing by up to 20% one to three
weeks following treatment and falling to zero by five weeks post-treatment. Meanwhile, mean
takeup (averaged across prices $0.50 and $1.49) does not increase post-treatment (and if anything
falls).

Our surveys suggest that while the mask distribution campaign may have increased the short-
run usage of pollutionmasks, it did so only temporarily, even during a period of very high ambient
PM2.5 levels in Delhi. This is consistent with our findings in the preceding sections of the paper:
mask takeup is responsive to recent air quality, but its effects are short-lived. Moreover, the limited
effect of the campaign and our findings in Section 5.3 are consistent in the sense that it does not
appear that social approbation is the primary driver of limited demand for clean air in this setting.

7 Discussion

In this paper, we document results from a field experiment designed to study the demand for clean
air in Delhi, a city with one of the world’s highest concentrations of damaging air pollution. Using
randomized prices and quasi-random pollution variation, we estimate a model of mask demand
to provide the first experimental estimate of the marginal willingness-to-pay (MWTP) for clean air.
For respondents who are informed about the costs of air quality prior to the mask offer, we find
a mean estimate of about $6.2 USD for a 10 𝜇𝑔/𝑚3 reduction in PM2.5, which is on the lower end
of prior comparable estimates in the literature. Even so, given the very-high levels of air pollution
and the population of Delhi, these estimates suggest large public benefits from reductions in air
pollution: our estimates imply that, for thosewho received the information treatment, residents are
willing to pay roughly $47 USD per person to reduce levels of air pollution to the Indian standard.
This is in stark contrast to those who do not receive the information treatment, who would be
willing to pay only $8.7 USD for such a reduction.

We believe that the stark difference in demand for clean for respondents who receive informa-
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tion on the health effects of pollution versus not is worth emphasizing. Withmany other day-to-day
concerns, households with lower incomes and limited education may simply not have the capac-
ity to internalize the threat of air pollution in day-to-day decision-making. That these households
become more responsive to recent air quality changes when provided information on its health
impacts suggests realized air pollution levels in these settings could be inefficiently low. That in-
formation provision seems to be a substitute with years schooling further suggests additional ben-
efits of education – it enables households to more accurate reflect their demand for public goods
(though we emphasize that the latter “effect” is an correlative association, not a causal finding).

The relationship between the demand for clean air and incomemerits consideration. If clean air
is a normal good, standard economic theory suggests that increases in income should yield higher
demand for air quality. That our own estimates of the demand for clean air increase with income
suggests that the proper comparison to other settings involves an income adjustment. Accordingly,
we extend the heterogeneity analysis in Section 5.4 by plotting MWTP as a function of income in
Fig. 7. The bottom panel captures the distribution of household income in our sample, while the
top panel projects MWTP per annual 10 𝜇/𝑚3 PM2.5 as light blue (uninformed) and dark blue
(informed) lines. Vertical lines show average household incomes for Bihar (one of the poorest states
in India), India as a whole, our sample in Delhi, and China as a whole. Focusing on the informed
line, we find that income increases MWTP for clean air by a factor of roughly two when moving
from our sample’s level of income ($10,000 USD per year) to $60,000 per year. This latter level
allows us to compare to the revealed preference measure for the demand for clean air produced by
Ito and Zhang (2020), who leverage the decision to purchase an air purifier as their revealedmarket
decision. The two estimates are comparable at similar income levels, and for respondents in our
sample who have been informed.

[FIGURE 7 ABOUT HERE]

To summarize, our results indicate that if there is an absence of demand for clean air, it is likely
explained by either a lack of information or a lack of salience in its health effects. That information
provision results in measurably positive demand for clean air and that those changes are primar-
ily centered on low-income, low-education individuals is relevant for considerations of the ben-
efits of public good provision in settings where poor households are the primary constituency.
The methodological approach we describe in this paper could be exported to other settings where
credible revealed preference measures of the demand for public goods are urgently needed.

The limited effect of public health campaigns (like the one described in Section 6) to make de-
fensive measures such as masks available suggests that the question of how to make the salience
of the benefits of clean air long-lasting remains a fruitful topic for future research. At the least, one
implication of our findings is that as incomes and education in India continue to rise, policymakers
should expect commensurate increases in the demand for clean air.
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Tables and Figures

Tables

Table 1: Sample Characteristics at Baseline

Main Sample
(1)

Delhi
(2)

India
(3)

Annual Personal Income (USD) 2,936.40 3,676.64 1,487.93
(8,285.73) (8,763.69) (4,329.80)

Annual Personal Income = 0 0.61 0.70 0.79
(0.49) (0.46) (0.41)

Annual Household Income (USD) 7,944.37 9,665.89 6,139.14
(15,087.20) (0.00) (0.00)

Below Poverty Line 0.20
(0.40)

Female 0.52 0.46 0.49
(0.50) (0.50) (0.50)

Age (≥ 18) 36.51 36.98 39.70
(12.76) (14.46) (15.77)

Years of School 7.37 7.45 5.90
(5.01) (5.50) (5.18)

Household Size 5.50 3.86 4.18
(2.40) (1.99) (1.97)

Ever Worn Mask 0.17
(0.38)

Has Air Purifier 0.02
(0.14)

Owns Bike or Car 0.39
(0.49)

Has Air Conditioning 0.11
(0.32)

Observations 2,466 3,956 433,339

Notes: This table reports means and standard deviations (in parentheses) for the study sample (column 1)
against those of Delhi and India (columns 2 and 3), across several covariates of interest at the individual
level. Statistics for Delhi and India come from the 2017-18 round of the Periodic Labour Force Survey (PLFS)
administered by the Government of India. For PLFS data we use sub-sample weights. For PLFS household
size data we use the household survey instead of the individual level survey. India Household Income taken
from India Human Development Survey (IHDS), and Delhi Household Income set to urban average from
IHDS.
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Table 2: The Demand for Clean Air

Logit LPM
(1) (2) (3) (4) (5)

Model Coefficients

Price (USD) −1.823*** −1.860*** −1.860*** −0.254*** −0.262***
(0.095) (0.091) (0.091) (0.008) (0.012)

PM2.5 (10𝜇𝑔/𝑚3) 0.005 0.003 0.001 0.001 0.001
(0.012) (0.012) (0.014) (0.002) (0.002)

× Information 0.014*** 0.014*** 0.018 0.002*** 0.003***
(0.005) (0.005) (0.011) (0.001) (0.001)

Information −0.085
(0.204)

Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 1.92 1.14 0.42 1.66 1.61
(4.51) (4.20) (5.04) (4.06) (4.41)

Information = 1 7.28* 6.24 7.09* 7.19* 10.10**
(4.30) (4.05) (3.97) (4.13) (4.39)

𝑝-value of difference 0.004 0.004 0.109 0.008 0.005

Surveyor-by-Round FEs Yes Yes Yes Yes Yes
Individual FEs Yes
LASSO Controls Yes Yes Yes
Observations 6,465 6,465 6,465 6,465 6,465

Notes: The table shows how price, pollution, and health information affect demand for
masks, and the resulting estimated demand for clean air. Each observation is one re-
spondent in a survey round. The dependent variable is whether the respondent bought
amask. Price (2019 USD) is the level of the randomized price offermade to the recipient,
PM2.5 (10 𝜇𝑔/𝑚3) is the average level of PM2.5 measured inDelhi over the preceding day
in 10 𝜇𝑔/𝑚3, and Information is a dummy for whether they received information in that
round on the negative health impacts of particulates exposure. TheMWTP panel shows
themarginal willingness to pay for clean air for thosewho did and did not receive health
information. Surveyor by Round FEs are fixed effects for each surveyor-round combi-
nation. LASSO controls are the set of controls selected by the Double-LASSO method.
Standard errors are given in parentheses and are three-way clustered: at the level of
price randomization (survey point by round), at the level of pollution averaging (day),
and at the respondent level.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table 3: Effect of Peer Belief and Past-Takeup

Logit
(1) (2) (3)

Model Coefficients
Price (USD) −1.860*** −1.861*** −1.952***

(0.091) (0.091) (0.109)
PM2.5 (10𝜇𝑔/𝑚3) 0.003 0.003 0.006

(0.012) (0.012) (0.013)
× Information 0.014*** 0.014*** 0.016**

(0.005) (0.005) (0.006)
Peer Belief 0.122 0.148

(0.184) (0.276)
Previous Mask Usage −1.081

(0.701)
Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 1.14 1.16 1.95
(4.20) (4.20) (4.57)

Information = 1 6.24 6.27 7.43*
(4.05) (4.05) (4.34)

𝑝-value of difference 0.004 0.004 0.010
Surveyor-by-Round FEs Yes Yes Yes
LASSO Controls Yes Yes Yes
Control Fnc. Yes
Observations 6,465 6,465 6,465

Notes: The table shows how price, pollution, health information, peer belief and past mask usage affect de-
mand for masks, and the resulting estimated demand for clean air. Each observation is one respondent in a
survey round. The dependent variable is whether the respondent bought amask. Price (2019 USD) is the level
of the randomized price offer made to the recipient, PM2.5 (10 𝜇𝑔/𝑚3) is the average level of PM2.5 measured
in Delhi over the preceding day in 10 𝜇𝑔/𝑚3, Information is a dummy for whether they received information
in that round on the negative health impacts of particulates exposure, Peer Belief is a dummy for whether they
were received the treatment on how peers view masks, and Previous Mask Usage is a dummy for whether
they had ever worn a mask prior to that experimental round. The MWTP panel shows the marginal willing-
ness to pay for clean air for those who did and did not receive health information. Surveyor by Round FEs
are fixed effects for each surveyor-round combination. LASSO controls are the set of controls selected by the
Double-LASSO method. Standard errors are given in parentheses and are three-way clustered: at the level of
price randomization (survey point by round), at the level of pollution averaging (day), and at the respondent
level.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table 4: MWTP Heterogeneity

Annual Household
Income (USD) Gender Years of School

0 10,000 18,000 Female Male 0 8 15
Information = 0 −0.23 3.03 5.11

(4.19) (4.98) (6.52)
Information = 1 4.87 8.89* 11.45*

(4.11) (4.87) (6.58)
𝑝-value of difference 0.042 0.005 0.051

Information = 0 −1.10 3.44
(4.16) (4.87)

Information = 1 6.14 6.41
(3.86) (4.96)

𝑝-value of difference 0.001 0.211

Information = 0 −6.14 2.00 12.70**
(4.44) (3.97) (5.63)

Information = 1 3.36 7.32* 12.54**
(4.42) (3.90) (5.61)

𝑝-value of difference < .001 0.003 0.956

Notes: This table shows how MWTP, and the impact of health information on MWTP, varies
across observables. Values are marginal willingness to pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)
if the entire sample counterfactually had the given covariate value and did (not) receive health
information in that round on the negative health impacts of particulates exposure. Standard
errors and p-values are calculated using the delta-method from three-way clustering: at the
level of price randomization (survey point by round), at the level of pollution averaging (day),
and at the respondent level.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Figures

Figure 1: Map of Sample in Delhi

Notes: This map shows the 324 sampling points (blue), where surveys were conducted for the main sample.
Grey regions demarcate Delhi Government and Military Zones that largely do not contain residents.
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Figure 2: Experimental Timeline

Notes: This figure shows the timeline of our experiments and surveys against the bi-weekly rolling average of
ambient air pollution (PM2.5,𝜇𝑔/𝑚3) in Delhi. There were four rounds of our main experimental sample, and
then a secondary sample overlapping the government mask distribution programming..
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Figure 3: Experiment Flowchart

Full
sample

Pollution
mask
offers

Main
sampleControlPlacebo

Price 10 INR
($0.50)

Price 0 INR
($0)

Price 30 INR
($1.49)

Price 50 INR
($2.48)

No information Information

No peer belief Peer belief

Add peer belief treatment
in round 4

Re-randomize in round 3 and round 4

Notes: This diagram depicts the experimental design. Respondents were cross-randomized across the subsi-
dized price offer they received, whether they received information on the health impacts of pollution or not,
and whether they were informed about the level of peer disapproval of mask wearing or not. Respondents in
the control group did not receive a subsidized price offer, while respondents in the placebo group received a
non-N90 mask for free. See text for more details.
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Figure 4: Non-Price Treatment Materials

(a) Information Treatment

(b) Peer-Belief Treatment

Notes: This figure depicts the twonon-price interventions in the experiment. Panel (a) is the health information
treatment, with the right panel showing the (english-translated) handout shown to respondents and the left
sub-panel showing two scenes from the (english-translated) video shown to respondents. Panel (b) depicts
images that were shown to respondents to solicit private beliefs regarding mask appearance: respondents
were asked to respond yes or no to the question “do you think this person looks strange?”

33



Figure 5: Demand for Masks

(a) Randomized Prices and Mask Demand
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(c) Ambient Particulate Matter and Mask Demand, by Information Treatment
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Notes: This figure shows the observed relationship between mask take-up and the randomly assigned prices
offered (panel a) as well as the relationship between mask take-up and ambient city-wide PM (panel b). Panel
(c) separates the relationship between ambient PManddemandbywhether the respondent received the health
information treatment that round.
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Figure 6: Effect of Government Program
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Notes: This figure plots the time series of treated and untreated units in event time by week. The three panels
plot the time trends of the fraction of school that received masks from the government campaign, the fraction
of respondents that reported using masks, and the fraction of respondents that took subsidized mask offers
in Delhi (dark red) and Non-Delhi (orange), respectively.
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Figure 7: Income and the Marginal Willingness-to-Pay for Clean Air
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Notes: This figure plots the estimated MWTP at each level of income from the demand model with income
heterogeneity modeled as in Eq. (7). The red dot corresponds to the annual household income and estimated
MWTP from Ito and Zhang (2020); We adjust their original 2014 USD dollar value as follows: Undo the cur-
rency exchange rate they use (through correspondence with authors), convert to 2019 USD through purchas-
ing power parity data from the World Bank, adjust to go from their household mwtp to individual level,
adjust for time usage spent in home and thus exposed to air filter (using 2008 Chinese National Bureau of
Statistics time use data), adjust for air filter efficiency, and lastly convert PM10 reduction to PM2.5 reduction.
The vertical lines for Bihar, India, and China are average household incomes in each area: Bihar value comes
from survey data in Burgess et al. (2023), India value comes from the 2004 India Human Development Survey
purchasing power parity adjusted to 2019, and the China value comes from 2019 Chinese National Bureau of
Statistics data purchasing power parity adjusted.
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A Literature Estimates of Demand for Clean Air

sTable A.1: WTP for Clean Air Literature Review

Citation Location Time period Original
WTP estimate

Original
WTP units

Standardized
WTP estimate
(PPP 2018 USD)

Standardized
WTP units Notes

Category 1 – Discrete choice model incorporating disutility from migration

Bayer, Keohane,
and Timmins
(2009)

US metro
areas 1990, 2000 $149 - $185

Annual, household level,
WTP for a one unit
reduction in average
PM10 concentrations

$360 - $447
*base year:1984

Annual, household level,
WTP for one unit
reduction in average
PM10 concentrations

The estimate ranges between $360
and $447 depending on the set of
covariates used.

Freeman et
al. (2019)

China 2005 $21.70

Annual, household level,
WTP for a one unit
reduction in average
PM2.5 concentrations

$28
*base year: 2005

Annual, household level,
WTP for a one unit
reduction in average
PM2.5 concentrations

This paper uses a residential
sorting model incorporating
migration disutility to recover the
implicit value of clean air.

Category 2 – Conventional hedonic pricing

Yusuf and Resosu-
darmo (2009)

Jakarta,
Indonesia 1997-1998 $28 - $85

Cumulative, household
level, WTP for 25 years
reduction of a unit of
pollutant

$1.8 - $5.3
*base year: 1997

Annual, household level,
WTP for a unit reduction
of a pollutant

The annual per family value of
clean air ranges from $1.8 (SO2)
to $5.3 (THC) in Jakarta.

Finney, Goetzke,
and Yoon (2011)

Southern
California 1999-2000 $44.8 - $72.8

Monthly, household level,
WTP for 10% increase
in number of days air
quality standards are met

$783 - $1,273
*base year: 2000

Annual, household level,
WTP for 10% increase
in number of days air
quality standards are met

$783 corresponds to the WTP for
middle-income households and
$1,273 for high-income
households.

Gonzalez, Leipnik,
and Mazumder
(2013)

Mexico - 3
cities

2003 -
2004 $41.73

Cumulative, individual
level, WTP for a unit
reduction in PM10 levels

$55.47
*base year: 2004

Cumulative, individual
level, WTP for a unit
reduction in PM10 levels

The estimate is for Mexico City.

Nishitateno and
Burke (2021)

Japan 1995-2015 $8

Cumulative, individual
level, WTP per square
meter of land area for
total reduction in SPM
concentration

$8.48
*base year: 2015

Cumulative, individual
level, WTP per square
meter of land area for
total reduction in SPM
concentration

This paper uses the introduction
of the diesel vehicle registration
restriction in Japan in 2001 to
study the reduction in suspended
particulate matter (SPM)
concentrations.

Category 3 – Other

Zhang and Mu
(2018)

China - 190
cities

2013 -
2014 $100,000

Cumulative, population
level, cost of one
severely polluted day
(AQI ≥ 301)

$106,070
*base year: 2014

Cumulative, population
level, cost of one
severely polluted day
(AQI ≥ 301)

The paper elicits the marginal
effect of air pollution on mask
purchases controlling for
relevant variables.

Deschenes, Green-
stone, and Shapiro
(2017)

USA 1997-2007 $2.6 billion

Annual, population level,
WTP for reduction of 1
million tons of NOx
emissions

$20.25
*base year: 2015

Annual, individual level,
WTP for reduction of 1
million tons of NOx
emissions

The estimate is derived from counties
with NOx emissions in the NOx
Budget Training Program participating
states with an estimated population
of 136 million people.

Gao, Song, and
Timmins (2023)

China 2011-2016 171, 336
Chinese Yuan

Cumulative, individual
level, MWTP for a one
unit reduction in
PM2.5 concentration

$48, $95
*base year: 2014

Cumulative, individual
level, MWTP for a one
unit reduction in
PM2.5 concentration

The paper uses an unexpected
program to disclose pollution data in
China in 2012 to estimate a WTP of
$48 under imperfect information and
a WTP of $95 under accurate
information.

Maarraoui et
al. (2023)

UK 2004-2019
PM10: £60
PM2.5: £103
NO2: £62.5

Monthly, household
level, WTP to avoid a
one unit increase in
PM10/PM2.5/NO2

PM10: $1,041
PM2.5: $1,788
NO2: $1,085
*base year: 2019

Annual, household level,
WTP to avoid one unit
increase in PM10/
PM2.5/No2

This paper uses a life satisfaction
regression.

Category 4 – Contingent valuation models

Carlsson and
Johansson-
Stenman (2000)

Sweden 1996 2000 SEK
Annual, individual level,
WTP for a 50% reduction
of harmful substances

$346.17
*base year: 1996

Annual, individual level,
WTP for a 50% reduction
of harmful substances

This study uses the contingent
valuation method.

Vlachokostas et
al. (2011)

Thessaloniki,
Greece 2009 €920

Annual, individual level,
WTP to save one year of
life loss

$1,354
*base year: 2009

Annual, individual level,
WTP to save one year of
life loss

This study uses the contingent
valuation method to elicit the
WTP for reducing the risk of
premature mortality attributed
to air pollution.

Donfouet, Cook,
and Jeanty (2015)

Douala,
Cameroon 2011 225

CFA Francs

Monthly, household level,
WTP for a 25% reduction
in air pollution

$12.63
*base year: 2011

Annual, household level,
WTP for a 25% reduction
in air pollution

This study uses the contingent
valuation method in a
hypothetical referendum scenario.

Ndambiri,
Mungatana, and
Brouwer (2015)

Nairobi,
Kenya

2015 $4.67
Monthly, individual level,
WTP for motorized
emission reductions

$59
*base year: 2015

Annual, individual level,
WTP for motorized
emission reductions

This study uses the contingent
valuation method.

Filippini and
Martı́nez-Cruz
(2016)

Mexico City 2007-2008 $262
Annual, individual level,
WTP for improved air
quality

$305.5
*base year: 2008

Annual, individual level,
WTP for improved air
quality

This paper elicits WTP for
improved air quality by means of
a single-bounded, referendum
format contingent valuation question.

Poder and He
(2017)

Quebec and
France 2009 CAD 5440

Cumulative, population
level, WTP for cleaner
cars for a 62.2% reduction
in exhaust gases

$5,297
*base year: 2009

Cumulative, population
level, WTP for cleaner
cars for a 62.2%
reduction in exhaust
gases

The estimate refers to the average
WTP across respondents from
Quebec and France.
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Table A.1 continued from previous page

Citation Location Time period Original
WTP estimate

Original
WTP units

Standardized
WTP estimate
(PPP 2018 USD)

Standardized
WTP units Notes

Akhtar et al. (2017) Lahore,
Pakistan 2016 $118

Annual, individual level,
WTP to decrease level of
air contamination by 50%

$123.4
*base year: 2016

Annual, individual level,
WTP to decrease level
of air contamination
by 50%

This study uses the contingent
valuation method

Ligus (2018) Poland 2015 21.172 PLN
Monthly, individual
level, WTP for overall
reduction in air pollution

$152.4
*base year: 2015

Annual, individual level,
WTP for overall
reduction in air pollution

This study uses the contingent
valuation method.

Tantiwat, Gan, and
Yang (2021)

Thailand 2020 2,275 Baht
Annual, individual level,
WTP for improved air
quality

$179
*base year: 2020

Annual, individual level,
WTP for improved air
quality

This study uses the contingent
valuation method.

B Sampling Procedure
Our sampling frame consists of mostly poor and non-migrant workers living in Delhi, and some of
the surrounding urban areas. Themain sample, which we refer to as “low-income neighborhoods”
(𝑛 = 3,533) captures individuals residing in poor, informal settlements across Delhi. To create this
sample, we obtained a list of Jhuggie Jhopri (J.J.) Squatter Settlements (“clusters”) provided by the
Delhi Government’s Urban Shelter Improvement Board. To our knowledge, this is the most com-
prehensive list of slum clusters or squatter settlements available in Delhi. We randomly generated
sampling points (i.e., locations where enumerators could begin administering in-person surveys)
located around the center of each J.J. cluster. We excluded sampling points that were deemed to no
longer be slums or squatter settlements (due to urban development), using a combination of satel-
lite images and in-person checks. This resulted in 324 sampling points, around which our team
of enumerators enrolled individuals into our sample. Upon arriving at the sampling point, the
enumerator would survey adults at every other household with a small survey incentive of 50Rs
($0.73 USD). The sampling process was carried out between October and December 2018. To our
knowledge, this construction results in the largest and most representative sample of Delhi slum
settlements ever collected.
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C Experiment Documentation
C.1 Peer Belief Information Treatment

Figure C.1: Soliciting Beliefs on Mask Appearance

Notes: This figure depicts pictures that were shown to respondents to solicit private beliefs regarding mask
appearance. Each picture was shown in succession and the binary question “do you think this person looks
strange” was asked to respondents. The picture in the left shows someone with sunglasses, the middle shows
someone with a pollution mask, and the right shows someone with green hair.

C.2 Pollution Masks Offered

Figure C.2: 3M Pollution Mask

Notes: This figure depicts the mask that was offered to respondents in our experiment. The mask is manufac-
tured by 3M and filters 90% of particulate matter (PM) according to manufacturer tests. The retail price across
our surveys was roughly 100INR on average and wholesale prices were roughly 50INR.
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C.3 Mask Distribution Campaign

Table C.1: Historical protective mask distribution efforts (as of 2019)

Location Period Scale Issue Details
Delhi, India 2019 5,000,000 Pollution In advance of the annual winter pollution season,

N-95 pollution masks distributed to schoolchil-
dren in both public and private schools.

Malaysia 2019 500,000 Pollution During a particularly severe smog episode,
the National Disaster Management Agency
(NADMA) distributed masks to people in the
worst-affected areas.

Suwon, South
Korea

2018 36,000 Pollution For a two-day period starting on March 26, 2018,
Gyeonggi province placed 36,000 free masks on
185 buses after excessive fine dust triggered emer-
gency response.

Singapore 2013 1,100,000 SARS Similar kits were distributed for free once again.
Volunteers went door to door to distribute the
kits, while others had to collect them from local
centres.

Washington,
USA

2012 20,000 Pollution Free masks distributed to towns affected by wild-
fire smoke. The government drew upon an emer-
gency stockpile that had originally been intended
to address a swine flu epidemic.

Singapore 2003 1,100,000 SARS The government distributed a free SARS toolkit
(which included N-95 protective masks) to all
households.

This table describes historical government mask distribution efforts around the world as of 2019. Delhi’s
mask distribution policy was more than 4 times larger than the largest program before (Singapore’s mask
program during the SARS epidemic).
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D Treatment Groups, Balance and Attrition
D.1 Treatment Groups
Table D.1 describes the probability of treatment assignment in each round of the sample.

Table D.1: Probability of Assignment to Treatment Groups

No Health Info +
No Peer Belief Info

No Health Info +
Peer Belief Info

Health Info +
No Peer Belief Info

Health Info +
Peer Belief Info Total

0 Rps 13.99% 1.70% 20.94% 2.29% 38.92%
1 Rps 7.23% 0.87% 7.02% 0.82% 15.94%
2 Rps 6.69% 0.81% 7.21% 0.92% 15.64%
Black Mask (Free) 6.98% 1.04% 0.00% 0.00% 8.02%
No Mask 14.33% 0.00% 7.15% 0.00% 21.48%
Total 49.22% 4.43% 42.32% 4.03% 100.00%

Note: This table reports probabilities (1-100) of treatment assignment across surveys in all rounds of the sample.
Rows describe types of mask offers and columns describe different information interventions.

D.2 Balance Across Treatment Arms
To test the validity of our randomization in the main experiment, we collect baseline characteristics
for each individual. In this section, we report means of selected variables at baseline for all control
and treatment groups, as well as 𝑝-values for differences in means across groups and rounds. We
find that covariates are similarly balanced across rounds as well as for the full set of 50+ covariates.
We find no statistically meaningful difference in covariates of interest across various prices and
intervention arms.

The tables below describe balance in selected baseline (round 1) characteristics across treatment
arms, for each round. Each cell is the mean of the corresponding baseline variable (row) for the
corresponding treatment variable (column). Standard deviations are in parenthesis. The rightmost
column reports a 𝑝-value of test of equality across means of the given variable across all treatment
arms using a cluster permutation F-test: We permute the group assignments across the sampling
points and see what portion of those permutations result in an F-stat greater than the one observed
in the raw data.
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Table D.2: Baseline Balance Across Price Arms in Round 1

Placebo Control N90
0 INR

N90
10 INR

N90
30 INR

N90
50 INR 𝑝-value

PM2.5 (10𝜇𝑔/𝑚3) 21.663 19.964 21.035 20.940 21.245 20.133 0.802
(7.792) (6.241) (6.805) (6.394) (6.872) (5.618)

asinh(Weekly-Income/1000) 2.880 3.401 3.862 3.705 3.282 3.394 0.234
(4.286) (4.415) (4.583) (4.603) (4.410) (4.469)

asinh(Household-Income/1000) 7.486 8.220 8.508 8.235 8.492 8.035 0.266
(3.887) (3.190) (3.144) (3.467) (2.888) (3.546)

Female 0.505 0.513 0.502 0.502 0.573 0.516 0.668
(0.501) (0.500) (0.500) (0.500) (0.495) (0.500)

Age 36.910 36.670 37.273 37.011 36.811 35.302 0.499
(13.192) (13.968) (12.771) (13.152) (13.093) (12.514)

Years of School 6.318 7.007 7.485 7.788 6.806 7.543 0.071
(5.182) (5.021) (5.009) (4.915) (4.981) (5.104)

Ever Worn Mask 0.161 0.150 0.191 0.171 0.138 0.186 0.191
(0.368) (0.357) (0.393) (0.377) (0.345) (0.390)

Pollution-Symptoms 0.743 0.673 0.691 0.649 0.646 0.651 0.122
(0.438) (0.469) (0.463) (0.478) (0.479) (0.477)

Non Pollution-Symptoms 0.654 0.566 0.582 0.570 0.538 0.527 0.199
(0.477) (0.496) (0.494) (0.496) (0.499) (0.500)

Observations 280 813 811 539 543 547
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Table D.3: Baseline Balance Across Information Arms in Round 1

Health-Info No Health-Info 𝑝-value
PM2.5 (10𝜇𝑔/𝑚3) 20.452 20.940 0.537

(6.120) (6.906)
asinh(Weekly-Income/1000) 3.446 3.530 0.676

(4.458) (4.510)
asinh(Household-Income/1000) 8.129 8.341 0.350

(3.398) (3.229)
Female 0.526 0.511 0.592

(0.499) (0.500)
Age 36.636 36.734 0.878

(13.191) (13.143)
Years of School 7.389 7.102 0.268

(5.017) (5.051)
Ever Worn Mask 0.176 0.160 0.282

(0.381) (0.367)
Pollution-Symptoms 0.671 0.672 0.954

(0.470) (0.470)
Non Pollution-Symptoms 0.563 0.570 0.763

(0.496) (0.495)

Observations 1,619 1,914

D.9



Table D.4: Baseline Balance Across Price Arms in Round 2

Placebo Control N90
0 INR

N90
10 INR

N90
30 INR

N90
50 INR 𝑝-value

PM2.5 (10𝜇𝑔/𝑚3) 20.360 20.704 19.632 20.429 21.026 19.997 0.733
(3.404) (5.898) (4.881) (4.495) (5.952) (5.722)

asinh(Weekly-Income/1000) 2.529 3.098 3.331 3.469 2.845 3.111 0.537
(4.112) (4.316) (4.421) (4.516) (4.220) (4.404)

asinh(Household-Income/1000) 7.307 8.189 8.301 8.840 8.704 8.424 0.149
(3.910) (3.215) (3.333) (2.762) (2.556) (3.223)

Female 0.594 0.555 0.572 0.570 0.645 0.545 0.472
(0.492) (0.497) (0.495) (0.496) (0.479) (0.499)

Age 36.213 37.145 37.434 37.770 36.874 35.735 0.593
(12.915) (14.390) (13.128) (13.597) (13.177) (12.626)

Years of School 6.044 7.056 7.309 7.791 6.663 7.503 0.048
(5.051) (5.035) (5.020) (4.818) (4.884) (5.078)

Ever Worn Mask 0.128 0.170 0.184 0.160 0.109 0.169 0.080
(0.335) (0.376) (0.388) (0.368) (0.312) (0.375)

Pollution-Symptoms 0.750 0.689 0.704 0.676 0.637 0.666 0.268
(0.434) (0.463) (0.457) (0.469) (0.482) (0.472)

Non Pollution-Symptoms 0.683 0.580 0.607 0.582 0.536 0.541 0.139
(0.466) (0.494) (0.489) (0.494) (0.499) (0.499)

Observations 180 553 560 349 366 344
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Table D.5: Baseline Balance Across Information Arms in Round 2

Health-Info No Health-Info 𝑝-value
PM2.5 (10𝜇𝑔/𝑚3) 20.057 20.560 0.387

(4.991) (5.564)
asinh(Weekly-Income/1000) 3.031 3.211 0.469

(4.294) (4.412)
asinh(Household-Income/1000) 8.294 8.408 0.646

(3.175) (3.171)
Female 0.588 0.567 0.490

(0.492) (0.496)
Age 37.074 36.912 0.840

(13.576) (13.304)
Years of School 7.249 7.070 0.519

(4.983) (5.016)
Ever Worn Mask 0.175 0.145 0.070

(0.380) (0.352)
Pollution-Symptoms 0.693 0.676 0.451

(0.462) (0.468)
Non Pollution-Symptoms 0.580 0.584 0.909

(0.494) (0.493)

Observations 1,084 1,268
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Table D.6: Baseline Balance Across Price Arms in Round 3

Placebo Control N90
0 INR

N90
10 INR

N90
30 INR

N90
50 INR 𝑝-value

PM2.5 (10𝜇𝑔/𝑚3) 10.780 11.480 12.302 11.470 11.733 12.220 0.855
(4.398) (4.941) (5.252) (4.998) (5.698) (5.290)

asinh(Weekly-Income/1000) 2.420 2.757 3.215 2.926 3.231 3.121 0.624
(4.048) (4.182) (4.325) (4.280) (4.456) (4.416)

asinh(Household-Income/1000) 7.828 8.214 8.176 8.351 8.139 7.856 0.945
(3.768) (3.109) (3.067) (3.239) (3.575) (3.757)

Female 0.573 0.565 0.569 0.622 0.576 0.565 0.915
(0.496) (0.496) (0.496) (0.486) (0.495) (0.497)

Age 35.968 36.456 37.538 34.963 37.587 37.835 0.243
(13.821) (14.115) (13.436) (11.869) (13.190) (12.912)

Years of School 6.503 7.379 7.122 6.821 7.281 7.345 0.730
(5.147) (5.046) (4.735) (5.092) (5.032) (5.165)

Ever Worn Mask 0.096 0.159 0.141 0.123 0.161 0.190 0.162
(0.295) (0.366) (0.348) (0.329) (0.368) (0.393)

Pollution-Symptoms 0.656 0.653 0.701 0.668 0.657 0.678 0.806
(0.477) (0.477) (0.458) (0.472) (0.476) (0.468)

Non Pollution-Symptoms 0.548 0.511 0.597 0.568 0.531 0.585 0.488
(0.499) (0.501) (0.491) (0.496) (0.500) (0.493)

Observations 157 352 461 301 335 311
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Table D.7: Baseline Balance Across Information Arms in Round 3

Health-Info No Health-Info 𝑝-value
PM2.5 (10𝜇𝑔/𝑚3) 11.965 11.612 0.602

(5.428) (4.961)
asinh(Weekly-Income/1000) 3.172 2.853 0.236

(4.365) (4.254)
asinh(Household-Income/1000) 8.111 8.128 0.947

(3.356) (3.401)
Female 0.566 0.588 0.506

(0.496) (0.492)
Age 36.794 36.932 0.863

(13.112) (13.401)
Years of School 7.157 7.113 0.893

(5.012) (5.003)
Ever Worn Mask 0.140 0.158 0.385

(0.347) (0.365)
Pollution-Symptoms 0.685 0.659 0.275

(0.465) (0.474)
Non Pollution-Symptoms 0.579 0.541 0.210

(0.494) (0.499)

Observations 928 989
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Table D.8: Baseline Balance Across Price Arms in Round 4

Placebo Control N90
0 INR

N90
10 INR

N90
30 INR

N90
50 INR 𝑝-value

PM2.5 (10𝜇𝑔/𝑚3) 8.832 8.472 8.890 8.515 8.739 8.881 0.755
(2.297) (1.782) (1.937) (1.897) (2.244) (1.733)

asinh(Weekly-Income/1000) 3.409 2.779 2.863 3.394 3.182 2.918 0.583
(4.454) (4.194) (4.312) (4.446) (4.386) (4.265)

asinh(Household-Income/1000) 8.067 8.169 7.992 7.933 8.505 7.880 0.824
(3.381) (3.152) (3.644) (3.498) (3.031) (3.692)

Female 0.491 0.576 0.556 0.538 0.608 0.629 0.325
(0.501) (0.495) (0.497) (0.499) (0.489) (0.484)

Age 39.839 36.418 36.573 37.935 36.678 36.356 0.266
(14.181) (13.926) (13.347) (13.363) (12.484) (13.233)

Years of School 6.874 7.249 7.154 7.327 6.924 6.801 0.907
(5.256) (5.001) (4.916) (5.189) (5.020) (4.949)

Ever Worn Mask 0.149 0.154 0.144 0.211 0.148 0.149 0.234
(0.357) (0.361) (0.351) (0.408) (0.356) (0.357)

Pollution-Symptoms 0.703 0.648 0.660 0.687 0.724 0.708 0.281
(0.458) (0.478) (0.474) (0.464) (0.448) (0.456)

Non Pollution-Symptoms 0.617 0.536 0.550 0.599 0.555 0.623 0.389
(0.487) (0.499) (0.498) (0.491) (0.498) (0.485)

Observations 175 403 480 342 330 342
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Table D.9: Baseline Balance Across Information Arms in Round 4

Health Info
Peer-Info

Health-Info
No Peer-Info

No Health Info
Peer-Info

No Health-Info
No Peer-Info 𝑝-value

PM2.5 (10𝜇𝑔/𝑚3) 8.476 8.799 8.611 8.856 0.597
(1.819) (1.954) (2.100) (1.941)

asinh(Weekly-Income/1000) 2.695 3.063 3.704 2.797 0.024
(4.215) (4.336) (4.561) (4.197)

asinh(Household-Income/1000) 7.873 7.985 8.512 7.981 0.388
(3.666) (3.490) (3.086) (3.420)

Female 0.582 0.572 0.507 0.607 0.164
(0.494) (0.495) (0.501) (0.489)

Age 35.392 37.826 38.349 36.490 0.075
(12.773) (13.817) (13.830) (13.058)

Years of School 7.460 7.007 7.220 6.837 0.539
(4.970) (5.012) (5.001) (5.083)

Ever Worn Mask 0.156 0.186 0.167 0.134 0.151
(0.363) (0.390) (0.373) (0.340)

Pollution-Symptoms 0.691 0.690 0.698 0.666 0.685
(0.463) (0.463) (0.460) (0.472)

Non Pollution-Symptoms 0.573 0.568 0.602 0.562 0.796
(0.495) (0.496) (0.490) (0.497)

Observations 398 548 437 689
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D.3 Attrition Across Rounds
We report attrition rates across survey rounds and treatment arms. We find that we experience
roughly 30% attrition round-to-round, but that this rate is not differential across arms. The tables
below describe attrition rates across treatment arms, over rounds. The first row is the number
of observations in round 1 for each treatment arm (column). The subsequent rows describe the
fraction of these observations that we successfully surveyed int he corresponding round (row).

Table D.10: Round-to-Round Attrition Across Price Arms

No Mask Black Mask
0 INR

N90 Mask
0 INR

N90 Mask
10 INR

N90 Mask
30 INR

N90 Mask
50 INR Total

Round 1 Count 813 280 811 539 543 547 3533
Round 1 (%) 100 100 100 100 100 100 100
Round 2 (%) 68 64 69 65 67 63 67
Round 3 (%) 43 56 57 56 62 57 54
Round 4 (%) 50 62 59 63 61 63 59

Table D.11: Round-to-Round Attrition Across Information Arms

No PM2.5 Health
Information

PM2.5 Health
Information Total

Round 1 Count 1,914 1,619 3533
Round 1 (%) 100 100 100
Round 2 (%) 66 67 67
Round 3 (%) 52 57 54
Round 4 (%) 59 58 59
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E A Model of Optimal Mask Usage
Given equations (1-4) on themask takeup decision, we can further model expected usage 𝐸𝑈𝑖 itself
as another maximization problem:

𝐸𝑈𝑖 = max
𝑢∈[0,1]

𝜂 + 𝑏𝑖𝑢 − 𝑐𝑖𝑢2 ,

where 𝑢 is the fraction of time using the mask, 𝑏𝑖 is the marginal benefit, and 𝑐𝑖 is the marginal cost
of usage.

Actual usage 𝐴𝑈𝑖 is then realized after some usage shock 𝜔𝑖 :

𝐴𝑈𝑖 = 𝐸𝑈𝑖 + 𝜔𝑖

Note that when 𝐸[𝜔𝑖] = 0 we have:
𝐸[𝐴𝑈𝑖] = 𝐸𝑈𝑖

However, we only observe actual usage for those who takeup:

𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1] = 𝐴𝑈1

Actual usage for those who do not takeup is unobserved:

𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 0] = ?

If 𝐸𝑈𝑖 is assumed to be 1, then overstating usage could result in bias:³⁵

→ If true 𝐸𝑈𝑖 < 1 then MWTP would be downward biased

More generally, the selection of who takes up could result in bias depending on how the takeup
unobservable 𝜖𝑖 correlates with the determinants of usage 𝑐𝑖 , 𝑏𝑖 :

→ If 𝑏𝑖 , 𝑐𝑖 ̸⊥ 𝜖𝑖 then 𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1] ≠ 𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 0] and MWTP would be biased

→ If 𝑏𝑖 , 𝑐𝑖 ⊥ 𝜖𝑖 then

𝐸[𝐴𝑈𝑖] = 𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1] = 𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 0]
and MWTP would be unbiased

Note that because prices were randomly assigned, those who takeup at higher prices have higher
unobserved preferences:

𝐸[𝜖𝑖 |Takeup𝑖 = 1, 𝑝𝑖 = 50] > 𝐸[𝜖𝑖 |Takeup𝑖 = 1, 𝑝𝑖 = 30] > . . .

So if 𝑏𝑖 , 𝑐𝑖 ̸⊥ 𝜖𝑖 we should have:

𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1, 𝑝𝑖 = 50] ≠ 𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1, 𝑝𝑖 = 30] ≠ . . .

35. e.g. Ito and Zhang (2018) assume full usage of air purifiers
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In Fig. E.1 we plot ex-post means of mask usage by prices, and find that mean usage is roughly
equal across all prices and we cannot reject a zero difference.³⁶ That is, we find that:

𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1, 𝑝𝑖 = 50] = 𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1, 𝑝𝑖 = 30] = . . .

which suggests that 𝑏𝑖 , 𝑐𝑖 ⊥ 𝜖𝑖 may be a reasonable assumption. Together we then have:

𝐸[𝐴𝑈𝑖] = 𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1] = 𝐴𝑈1 = 𝐸𝑈𝑖

This is thus consistent with assuming 𝐸𝑈𝑖 is the ex-post mean usage among those who takeup
masks, which is 0.08 (1.8 hours per day).

36. Note that usage was only asked for individuals who had a mask at the time of survey. Thus, there is attrition in the
fraction of respondents for which we observe usage (top-left of Fig. E.1). However, we do not observe any differences in this
fraction across prices either, further suggestive of equal usage across price arms.
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Figure E.1: Mask Usage by Price

Avg. Days Mask Worn per Week
(if took up and still have mask)
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Notes: This figure reports means and standard deviations of the given variable by round (color) and experi-
mental price arm (x-axis). The top-left panel plots whether individuals still have masks conditional on taking
up in a prior round. The remaining plots report self-reported usage conditional on taking up in a prior period
and still having the mask: the top-right panel plots the hours in the day the respondent last used the mask;
the bottom-left panel plots the days the respondent last used the mask in the last week; and the bottom-right
panel plots the days the respondent last used the mask in the past month. Standard errors are in parentheses.
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F Imputation
F.1 Multiple Imputation
In our datawe have twomeasures of income, personal and household. Personal income in our sam-
ple has a radically different distribution between males and females as seen in Appendix Fig. F.1,
with 80% reported as 0 for females, while only 30% report 0 for males. This discrepancy, though,
does not imply that males and females have such radically different sets of resources which they
draw on tomake their financial decisions, but instead they likely both use their household’s income
as the income pot from which they draw when making purchases. This reasoning suggests that to
accurately understand how financial resources affect decision making, we would be interested in
the interaction of MWTP with household income.

Household income, although similarly distributed across males and females in our sample as
seen in Appendix Fig. F.1, is missing for 60% of individuals in our sample. Thus, we use multiple
imputation (Rubin 1987, 1996): We create 30 different datasets each with a different set of imputed
values, run our analysis on each of the 30 completed datasets separately, and then aggregate the
results across those 30 analyses in a way accounting for variance in e.g. a parameter estimate both
inside each completed dataset and across the 30 completed datasets. The intuition underlying
multiple imputation is that under certain assumptions about the imputation technique, the mul-
tiple different imputed values used in each completed dataset will reflect our uncertainty about
what that missing value might be, and thus we are taking into account our additional uncertainty
resulting from not knowing what those true values are.

Our imputation procedure to generate each of the 30 completed datasets is to use the Multi-
ple Imputation by Chained Equation (MICE) algorithm with random forests (Doove, Van Buuren,
and Dusseldorp 2014) on each. This method imputes values for a particular variable using a “fully
conditional specification” of the values of that variable conditional on all other variables. In par-
ticular, after an initial filling of missing values with other observed values at random, we then
cycle through variables using the distribution of all other variables’ current assigned values along
with random forests to fill new values for all the observations with initially missing values of that
variable. We then apply this procedure in a cycle through all variables which had any missing
values, and we then iterate this whole cycle several times to achieve stability in the imputed val-
ues. We chose random forest to estimate the full conditional specification of values conditional on
other variables due to its flexibility in incorporating arbitrary interactions and estimating data of
arbitrary distributions due to its non-parametric nature. The key assumption for the validity of the
imputation procedure is that the data is “Missing at Random” (as opposed to “Missing Completely
at Random” and “Not Missing at Random”) meaning that whether or not a value for a particular
covariate is missing can be modelled as a function of other covariates and an i.i.d. (across indi-
viduals) distributed error term. We believe this is a reasonable assumption given the number of
covariates we observe and use in the imputation procedure, but we also include our analysis re-
stricted to only the raw data, and also using an alternative imputation procedure, below.
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Figure F.1: Distribution of observed values of weekly and household incomes in raw data
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Notes: This figure plots the density histogram of the raw data distribution of weekly personal and household
incomes (in 1000s Rps), with our preferred inverse hyperbolic-sine asinh transformation.
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Figure F.2: Distribution of Test Imputation Predictions and Errors
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Notes: For 6 different test datasets with amputed household income data, and using three different imputation
methods (linear prediction, unconditional mean imputation, and random forest imputation) this figure plots
the density of the error distributions.
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Figure F.3: Distribution of observed values of weekly household income in raw data
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Notes: This figure plots three distributions of weekly household incomes (in 1000s Rps), with our preferred
inverse hyperbolic-sine asinh transformation. The green line is the raw data, the blue line is if we use our
full random forest imputation procedure to create a single completed dataset, and the orange is if we use our
full imputation procedure, but with linear prediction instead of random forest, to create to create a single
completed dataset.

F.2 Variables Chosen For Multiple Imputation
To choose the variables which we use for multiple imputation, we look at the entire space of 63 in-
dividual level covariates collected for any of the 2645 individuals contacted. We then observe that,
excluding Household income which we intend to be the centraltarget of our multiple imputation,
there are only two variables (hours per day masks were worn and whether masks look strange)
with more than 800 respondent’s missing values (2507 and 857 missing respectively). All other
covariates having fewer than 75 missing respondent values (i.e. < 3% of all respondents missing)
. Thus, in our process of multiple imputation we only exclude these two variables with significant
missing percentages, and include the remaining 61 in our MICE algorithm. We similarly include
these 61 variables and surveyor fixed effects to predict attrition in a cross-validated relaxed lasso
to generate attrition inverse probability weights.

F.3 Results using Alternate Imputation Method
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Table F.1: MWTP Heterogeneity – Linear Prediction

Annual Household
Income (USD) Gender Years of School

0 10,000 18,000 Female Male 0 8 15
Information = 0 1.14 2.06 2.58

(4.61) (4.60) (5.39)
Information = 1 5.13 7.67* 9.11*

(4.49) (4.43) (5.26)
𝑝-value of difference 0.129 0.002 0.003

Information = 0 −1.10 3.44
(4.16) (4.87)

Information = 1 6.14 6.41
(3.86) (4.96)

𝑝-value of difference 0.001 0.211

Information = 0 −6.14 2.00 12.70**
(4.44) (3.97) (5.63)

Information = 1 3.36 7.32* 12.54**
(4.42) (3.90) (5.61)

𝑝-value of difference < .001 0.003 0.956

Note: This table is similar to table 4. Here we show results from a single dataset where linear
regression is used to impute missing values rather than random forest.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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F.4 Results using Raw Data

Table F.2: MWTP Heterogeneity – Raw Data

Annual Household
Income (USD) Gender Years of School

0 10,000 18,000 Female Male 0 8 15
Information = 0 4.66 6.65 7.86

(5.61) (5.82) (7.58)
Information = 1 5.81 12.17** 16.05**

(5.43) (5.88) (8.05)
𝑝-value of difference 0.748 0.034 0.039

Information = 0 −1.10 3.44
(4.16) (4.87)

Information = 1 6.14 6.41
(3.86) (4.96)

𝑝-value of difference 0.001 0.211

Information = 0 −6.14 2.00 12.70**
(4.44) (3.97) (5.63)

Information = 1 3.36 7.32* 12.54**
(4.42) (3.90) (5.61)

𝑝-value of difference < .001 0.003 0.956

Note: This table is similar to table 4. Here we show results from a single dataset where we drop
observationsmissing household income. Statistical significance indicated by * 𝑝 <0.10, ** 𝑝 <0.05,
*** 𝑝 <0.01.
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F.5 Results using Personal Income

Table F.3: MWTP Heterogeneity – Personal Income

Annual Personal
Income (USD) Gender Years of School

0 10,000 18,000 Female Male 0 8 15
Information = 0 0.08 6.33 10.84

(4.17) (6.20) (9.13)
Information = 1 5.36 13.63** 19.62**

(3.89) (6.56) (9.93)
𝑝-value of difference 0.007 0.046 0.163

Information = 0 −1.10 3.44
(4.16) (4.87)

Information = 1 6.14 6.41
(3.86) (4.96)

𝑝-value of difference 0.001 0.211

Information = 0 −6.14 2.00 12.70**
(4.44) (3.97) (5.63)

Information = 1 3.36 7.32* 12.54**
(4.42) (3.90) (5.61)

𝑝-value of difference < .001 0.003 0.956

Note: This table is similar to table 4. Here we show results from a single dataset where we use
personal income rather than household income.Statistical significance indicated by * 𝑝 <0.10, **
𝑝 <0.05, *** 𝑝 <0.01.
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G Additional Specifications
G.1 Heterogeneity by Income, Gender, and Education
Let ℎ𝑖 be the covariate of interest for individual 𝑖. We modify the mask takeup decision in Eq. (4)
as follows:

Takeup𝑖𝑡 = 1{𝛼𝑖 − 𝛽𝑖𝑝𝑖𝑡 + 𝛾𝑖PM2.5𝑡 + 𝜙𝑠𝑡 + 𝑒𝑖𝑡 > 0},
𝑐𝑖 | {𝝌 𝑖 𝑗}𝑇𝑗=0 ∼𝑖𝑖𝑑 𝒩(0, 𝜎2

𝑐 )
𝛼𝑖 = 𝛼0 + 𝛼1ℎ𝑖
𝛽𝑖 = 𝛽0 + 𝛽1ℎ𝑖
𝛾𝑖 = 𝛾0 + 𝛾1ℎ𝑖

(7)

The modified expression of MWTP is therefore a function of ℎ𝑖 :

MWTP|ℎ=ℎ𝑖 =
𝛾0 + 𝛾1ℎ𝑖
𝛽0 + 𝛽1ℎ𝑖

× 1
0.9

× 24
1.8

× 365
7

. (8)
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Figure G.1: Heterogeneity in MWTP Controlling for Other-Covariate Interactions
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Notes: In each panel we allow MWTP to vary by one of three covariates (income, education, gender), while
integrating over the sample distribution of the other two covariates. The overall specification allows sensitivity
to price, pm, pm x info to vary by each of the three covariates.

G.2 Instrumenting Past Takeup
We use the minimum price of all past offers instead of just the previous price as it is a stronger
instrument for takeup in any previous round, and equally satisfactorywith respect to the exclusion
restriction. We use the control function approach in Train (2009) to include the residuals in the
following first-stage regression into Eq. (6):

Past Takeup𝑖𝑡 = 𝛼1 − 𝛽1Min Past Price𝑖 + 𝜂1𝑋𝑖 + 𝜖1𝑖𝑡 , (9)

This is an approximation of the true equation for Past Takeup𝑖𝑡 = max
{
{takeup𝑖 𝑗}𝑡−1

𝑗=0

}
as it both a

linear probability model and does not recognize the true dynamic nature of the model.
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H Assorted Tables
H.1 LPM Models

Table H.1: The Demand for Clean Air – Fixed Effects

Logit LPM
(1) (2) (3) (4) (5)

Model Coefficients

Price (USD) −1.818*** −1.823*** −0.259*** −0.257*** −0.254***
(0.096) (0.093) (0.008) (0.008) (0.008)

PM2.5 (10𝜇𝑔/𝑚3) 0.012 0.015 0.002 0.001 0.000
(0.011) (0.012) (0.002) (0.002) (0.002)

× Information 0.008 0.001 0.002** 0.003
(0.005) (0.001) (0.001) (0.002)

Information −0.009
(0.030)

Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 4.49 5.51 5.37 2.13 1.07
(4.11) (4.17) (4.73) (4.52) (4.90)

Information = 1 8.31** 8.37* 7.88* 7.89*
(3.94) (4.52) (4.49) (4.22)

𝑝-value of difference 0.162 0.221 0.011 0.136

Round FEs Yes Yes
Surveyor-by-Round FEs Yes Yes Yes
LASSO Controls Yes
Observations 6,465 6,465 6,465 6,465 6,465

Note: This table is similar to table 2. Column 1 fits a logit model with no interaction
between PM2.5 and the information treatment. The MWTP indicated by “Information
= 0” is the MWTP for the full sample. Column 2 includes round fixed effects rather than
surveyor-by-round fixed effects. Columns 3 and 4 compare LPM estimates with round
fixed effects and surveyor-by-round fixed effects. Column 5 includes information as a
demand level-shifter and LASSO controls. Statistical significance indicated by * 𝑝 <0.10,
** 𝑝 <0.05, *** 𝑝 <0.01.
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H.2 14 day average PM over city

Table H.2: The Demand for Clean Air – 14 day PM2.5

Logit LPM
(1) (2) (3) (4) (5)

Model Coefficients

Price (USD) −1.827*** −1.864*** −1.865*** −0.254*** −0.263***
(0.094) (0.090) (0.090) (0.008) (0.012)

PM2.5 (10𝜇𝑔/𝑚3) 0.014 0.008 −0.003 0.001 −0.001
(0.016) (0.016) (0.018) (0.002) (0.003)

× Information 0.016*** 0.015*** 0.035** 0.002*** 0.003***
(0.005) (0.005) (0.014) (0.001) (0.001)

Information −0.380
(0.249)

Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 5.09 2.74 −1.00 3.23 −1.98
(6.09) (5.72) (6.52) (6.10) (7.77)

Information = 1 10.91* 8.06 11.68* 8.91 6.62
(6.15) (5.78) (6.01) (6.27) (7.75)

𝑝-value of difference 0.002 0.003 0.015 0.007 0.007

Surveyor-by-Round FEs Yes Yes Yes Yes Yes
Individual FEs Yes
LASSO Controls Yes Yes Yes
Observations 6,465 6,465 6,465 6,465 6,465

Note: This table is similar to table 2 except that PM2.5 is averaged over the last 14 days
rather than over the last day. Statistical significance indicated by * 𝑝 <0.10, ** 𝑝 <0.05,
*** 𝑝 <0.01.
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H.3 7 day average PM over city

Table H.3: The Demand for Clean Air – 7 day PM2.5

Logit LPM
(1) (2) (3) (4) (5)

Model Coefficients

Price (USD) −1.827*** −1.863*** −1.864*** −0.255*** −0.263***
(0.094) (0.090) (0.090) (0.008) (0.012)

PM2.5 (10𝜇𝑔/𝑚3) 0.007 −0.001 −0.009 0.000 −0.001
(0.012) (0.011) (0.014) (0.002) (0.002)

× Information 0.016*** 0.015*** 0.032** 0.002*** 0.003***
(0.005) (0.005) (0.013) (0.001) (0.001)

Information −0.315
(0.227)

Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 2.50 −0.20 −3.36 1.14 −3.51
(4.30) (3.93) (4.96) (4.42) (5.92)

Information = 1 8.41** 5.28 8.15** 6.97 5.15
(4.14) (3.81) (3.93) (4.38) (6.09)

𝑝-value of difference 0.001 0.002 0.014 0.005 0.006

Surveyor-by-Round FEs Yes Yes Yes Yes Yes
Individual FEs Yes
LASSO Controls Yes Yes Yes
Observations 6,465 6,465 6,465 6,465 6,465

Note: This table is similar to table 2 except that PM2.5 is averaged over the last 7 days
rather than over the last day. Statistical significance indicated by * 𝑝 <0.10, ** 𝑝 <0.05,
*** 𝑝 <0.01.
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H.4 1 day average over respondent location

Table H.4: The Demand for Clean Air – Respondent Location

Logit LPM
(1) (2) (3) (4) (5)

Model Coefficients

Price (USD) −1.820*** −1.857*** −1.857*** −0.254*** −0.262***
(0.094) (0.090) (0.090) (0.008) (0.012)

PM2.5 (10𝜇𝑔/𝑚3) 0.000 0.000 0.000 0.000 0.001
(0.011) (0.010) (0.013) (0.001) (0.002)

× Information 0.014*** 0.013*** 0.013 0.002*** 0.003***
(0.005) (0.005) (0.011) (0.001) (0.001)

Information 0.001
(0.204)

Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 0.18 0.05 0.05 1.19 1.34
(4.23) (3.82) (4.61) (3.72) (4.04)

Information = 1 5.22 4.80 4.79 6.53* 8.98**
(3.95) (3.69) (3.56) (3.74) (3.99)

𝑝-value of difference 0.007 0.007 0.248 0.009 0.011

Surveyor-by-Round FEs Yes Yes Yes Yes Yes
Individual FEs Yes
LASSO Controls Yes Yes Yes
Observations 6,465 6,465 6,465 6,465 6,465

Note: This table is similar to table 2 except that PM2.5 is averaged over the last day at
the respondent’s location rather than over the full city. Statistical significance indicated
by * 𝑝 <0.10, ** 𝑝 <0.05, *** 𝑝 <0.01.
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H.5 Restricted to Multiple Respondent Sample

Table H.5: The Demand for Clean Air – Multiple Observations

Logit LPM
(1) (2) (3) (4) (5)

Model Coefficients

Price (USD) −1.816*** −1.852*** −1.852*** −0.252*** −0.262***
(0.097) (0.093) (0.093) (0.008) (0.012)

PM2.5 (10𝜇𝑔/𝑚3) 0.010 0.008 0.006 0.001 0.001
(0.012) (0.012) (0.014) (0.002) (0.002)

× Information 0.013** 0.013** 0.017 0.002** 0.003***
(0.005) (0.005) (0.012) (0.001) (0.001)

Information −0.068
(0.213)

Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 3.77 2.84 2.26 2.95 1.57
(4.46) (4.19) (5.05) (4.26) (4.41)

Information = 1 8.66** 7.67* 8.35** 8.06* 10.02**
(4.29) (4.07) (4.09) (4.32) (4.38)

𝑝-value of difference 0.016 0.013 0.174 0.027 0.005

Surveyor-by-Round FEs Yes Yes Yes Yes Yes
Individual FEs Yes
LASSO Controls Yes Yes Yes
Observations 6,053 6,053 6,053 6,053 6,053

Note: This table is similar to table 2 except that the sample is subsetted to only include
respondents that are observed multiple times in the data. Statistical significance indi-
cated by * 𝑝 <0.10, ** 𝑝 <0.05, *** 𝑝 <0.01.
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H.6 Attrition Weighted

Table H.6: The Demand for Clean Air – Attrition Weighted

Logit LPM
(1) (2) (3) (4) (5)

Model Coefficients

Price (USD) −1.816*** −1.853*** −1.852*** −0.255*** −0.263***
(0.095) (0.091) (0.091) (0.008) (0.012)

PM2.5 (10𝜇𝑔/𝑚3) 0.007 0.004 0.003 0.001 0.001
(0.012) (0.012) (0.014) (0.002) (0.002)

× Information 0.013*** 0.013*** 0.017 0.002** 0.003***
(0.005) (0.005) (0.011) (0.001) (0.001)

Information −0.074
(0.201)

Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 2.46 1.63 1.00 2.17 1.74
(4.52) (4.23) (5.04) (4.06) (4.49)

Information = 1 7.38* 6.33 7.08* 7.31* 10.23**
(4.33) (4.08) (3.99) (4.12) (4.44)

𝑝-value of difference 0.008 0.007 0.138 0.014 0.005

Surveyor-by-Round FEs Yes Yes Yes Yes Yes
Individual FEs Yes
LASSO Controls Yes Yes Yes
Observations 6,465 6,465 6,465 6,465 6,465

Note: This table is similar to table 2 except that observations areweighted by the inverse
of the probability of staying in the sample. We compute attritionweighting using LASSO
regression. Statistical significance indicated by * 𝑝 <0.10, ** 𝑝 <0.05, *** 𝑝 <0.01.
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I The Health Impacts of Mask Distribution
In model estimates, we find that demand for clean air and pollution masks are modest. What
drives ex-ante consumer surplus from mask receipt? By exploiting our randomized assignment of
pollution mask offers, we can estimate the effects of masks on ex-post short-run health outcomes.
For individual 𝑖 in round 𝑡 we estimate

𝑌𝑖,𝑡 = 𝛼 + 𝛽Takeup𝑖 ,𝑡−1 +HInfo𝑖,𝑡−1 + 𝑋′
𝑖𝜂 + 𝛿𝑡 + 𝜖𝑖𝑡 ,

where 𝑌𝑖𝑡 is the health outcome in round 𝑡, Takeup𝑖,𝑡−1 is whether the individual took up the mask
in round 𝑡 − 1, 𝑋𝑖 is individual-specific controls at baseline, and 𝛿𝑡 is the round fixed effects. Since
Takeup𝑖 ,𝑡−1 might be endogenous, we use indicators of whether the price of mask in round 𝑡 − 1
was 0 / 10/ 30 / 50 as instruments for Takeup𝑖,𝑡−1:

Takeup𝑖,𝑡−1 = 𝛽0 +
∑

𝑐∈{0,10,30,50}
𝛽1,𝑝1[𝑝𝑖,𝑡−1 = 𝑐] +HInfo𝑖 ,𝑡−1 + 𝑋′

𝑖𝛽2 + 𝛿𝑡 + 𝜂𝑖 ,𝑡−1.

We estimate this using Two Stage Least Squares.
We estimate the model using observations in two different samples. First, we include those

offered N90 masks at different prices (0, 10, 30, 50) as well as the control group. Second we include
the control group and the placebo group

We use a similar specification to estimate the health impact of black masks that were offered
in the placebo group. There are two main differences: 1) Takeup𝑖,𝑡−1 is now instrumented with
an indicator of whether the individual was assigned to the placebo group; and 2) the model is
estimated using observations in the placebo and control group.
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Table I.1: Health Impact of Mask Distribution

Control
Mean

Impact of
N90 Takeup

Impact of
Black Mask Takeup

Panel A: Self-Reported Health Outcomes
Pollution Symptoms 0.56*** -0.02 -0.01

(0.02) (0.02) (0.04)
[813] [3732] [1142]

Non-Pollution Symptoms 0.46*** 0.01 0.10***
(0.02) (0.02) (0.03)
[813] [3732] [1142]

Visited Hospital or Doctor Last 14 Days 0.36*** -0.01 0.03
(0.02) (0.02) (0.04)
[813] [3732] [1142]

Arcsinh(Hospital or Doctor Expenditures) 2.16*** 0.01 0.27
(0.13) (0.15) (0.27)
[813] [3723] [1142]

Panel B: Biometric Health Outcomes
Resting Heart Rate (BPM) 84.56*** -1.53** 0.27

(0.73) (0.72) (1.46)
[437] [1925] [599]

Systolic Blood Pressure 127.41*** -1.36 0.10
(1.23) (1.27) (2.02)
[429] [1871] [589]

Diastolic Blood Pressure 85.13*** -0.60 -1.37
(0.79) (0.82) (1.46)
[429] [1870] [589]

Blood Oxygen (%) 97.38*** -0.08 -0.02
(0.18) (0.19) (0.31)
[430] [1902] [588]

Peak Flow Lung Capacity (L/Min) 252.43*** 5.06 -6.28
(6.79) (6.44) (10.99)
[412] [1754] [559]

Notes: Panel A reports the average of self-reported health outcomes in the control group in rounds 2, 3,
and 4 and the estimated impact of N90 and black mask takeup in round 𝑡 − 1 on these outcomes in round
𝑡 for 𝑡 = 2, 3, and 4 from an IV regression as in equation (-). Panel B reports the average biometric health
outcomes in the control group from round 2 and 4 and the estimated impact of N90 and black mask takeup
from round 𝑡−1 on these outcomes in round 𝑡 for 𝑡 = 2 and 4. N90mask takeup in last round is instrumented
by indicators of whether the mask price in last round was 0/10/30/50 Rs. Black mask takeup in last round
is instrumented by indicators of whether the individual is assigned to the placebo group. We assign each
arm sample weights proportional to the inverse of the number of observations from that arm in that round.
As a result, all arms receive equal weight inside each round. Standard errors are clustered at the level of
treatment assignment (sampling point × round). Statistical significance indicated by * 𝑝 <0.10, ** 𝑝 <0.05,
*** 𝑝 <0.01.
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We find that the provision of inexpensive pollution masks has little impact on short-run health
outcomes. This seems to be driven by low self-reported usage of masks in the weeks following
mask takeup: those who takeup the free mask offer report using the mask for 1.8 hours per day
for 8 days. This suggests that total reductions in pollution exposure may be small for the average
individual. Our sample may not have enough power to detect small differences in short-run health
that would be expected with such a small reduction in air pollution exposure.

In addition, whatever value does exist in masks is a potentially large vector of short- and long-
run health and productivity impacts. We test only a small subset of these potential outcomes.
It is possible that (i) gains exist among unobserved dimensions and/or (ii) our sample is under-
powered to detect small effects among measured dimensions. Overall, however, these results are
consistent with our demand estimates which suggest MWTP and consumer surplus from mask
receipt is modest.

Lastly, another interpretation of little changes to short-term health is individual disbelief in
mask effectiveness. That is, if individuals do not think masks will filter PM2.5 and improve health,
they will not use them ex-post and thus experience no short-term health gain. However, as de-
scribed earlier, our model parameter estimates of 𝛾 > 0 suggest that, indeed, individuals have
higher demand at higher pollution levels (though imprecise), which yields a positive point estimate
of MWTP. We further find that the implied one-year VSL from our MWTP estimate is roughly 19%
of annual household income in our sample, similar to that of Ito and Zhang (2020).³⁷ This suggests
that individuals are, on average, interpreting masks as defensive investments against air pollution
and its associated health damages.

37. As in Ito and Zhang (2020), we can compute the implied one-year VSL from the MWTP estimate in this paper using
prior estimates of the life expectancy reductions associated with PM2.5 (Ebenstein et al. 2017).
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Table I.2: Pollution vs. Non-Pollution Health Symptoms in Survey

Symptom Air pollution re-
lated

Source (if pollution related)

Headaches TRUE Mukamal et. al. (2009)
Dizziness TRUE Künzli et. al. (2000)
Increased fatigue TRUE Lei et. al. (2016)
Vision impairment FALSE
Skin rashes FALSE
Joint pain FALSE
Numbness or tingling in
hands

FALSE

Coughing or wheezing TRUE Ostro (2004), Duflo et al. (2008), Afroz et al.
(2003)

Stomach ache FALSE
Shortness of breath / chest
tightness

TRUE Ostro (2004)

Burning eyes TRUE Afroz et al. (2003), Guttikunda and Goel (2013)
Nausea FALSE
Fever TRUE Lei et. al. (2016)
Toothaches FALSE
Hearing impairment FALSE
Phlegm TRUE Ostro (2004), Afroz et al. (2003)

Notes: This table describes the construction of pollution and non-pollution related symptoms. We report
various symptoms and whether or not they are related to pollution (and sources if so).
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J Government Mask Distribution
Fig. J.1 documents a tweet released by Chief Minister of Delhi Arvind Kejriwal announcing the
mask distribution program in 2019.

Figure J.1: Chief Minister of Delhi Tweets About Mask Distribution Campaign

Note: This figure shows a Twitter post by Chief Minister Arvind Kejriwal announcing the government mask
distribution program of 5 million pollution masks in November 2019. Pictures show two masks being dis-
tributed to each child at a Delhi government school.

J.1 Sampling Procedure
The secondary sample, which we refer to as “public bus commuters” (𝑛 = 2,110), was created later
in 2019 and captures individuals who use the public bus system in Delhi, and its neighboring cities
Gurgaon and Noida, used for constructing a control group. To create this sample, we randomly
selected 120 bus stops operated by the Delhi Transport Corporation, 18 bus stops from routes op-
erated by the Noida Metro Rail Corporation, and 79 bus stops from routes operated by Gurgaon
Metropolitan City Bus Limited. These three organizations comprise the universe of all bus stops
in these three cities. Upon arriving at the bus stop, the enumerator would survey every other in-
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dividual waiting at the bus stop with a small survey incentive of 50Rs ($0.73 USD). This sampling
process was carried out between October and December 2019.

Figure J.2: Bus Stops Classifications in Secondary Sample

Classification of Stop
Delhi
Gurgaon
Noida

Notes: This figure maps the bus stops in Delhi (blue) and in Non-Delhi (black), where surveys were conducted
for the secondary analysis of the Delhi government mask distribution campaign. Neighboring “Non-Delhi”
regions include Gurgaon to the south and Noida to the east.

J.1.1 Location definition

We collect two possible location variables for whether respondents are exposed to the Delhi gov-
ernmentmask distribution campaign. The first is the “home” address (whether the respondent has
lived in Delhi for the last 10 years or more); the second is the “stop” location (where the bus stop
is in Delhi). Because the mask distribution campaign offered masks to children attending schools,
we use the home definition to split our sample between the Delhi and the non-Delhi sample. We
provide estimates for both definitions below, and are qualitatively similar.

J.1.2 Balance
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Table J.1: Secondary Sample: Delhi vs Non-Delhi (Home Definition)

Non-Delhi
(1)

Delhi
(2)

p-value
(3)

Age 34.31 37.34 <0.01
Female (%) 0.26 0.29 <0.01
Completed Secondary School (%) 0.59 0.60 0.31
Employed (%) 0.81 0.78 0.07
Annual Income (USD) 9,084.48 8,057.83 0.36
Obs. 1,486 3,269

Notes: This table describes the mean of selected characteristics for the
Non-Delhi and the Delhi sample using the “home” definition (column
1 and 2, respectively). Column 3 reports a 𝑝-value of test of equality
across means of the given variable from the two samples.

Table J.2: Secondary Sample: Delhi vs Non-Delhi (Stop Definition)

Non-Delhi
(1)

Delhi
(2)

p-value
(3)

Age 36.55 36.18 0.26
Female (%) 0.24 0.34 <0.01
Completed Secondary School (%) 0.59 0.62 0.03
Employed (%) 0.73 0.87 <0.01
Annual Income (USD) 7,221.98 9,902.15 0.01
Obs. 2,747 2,016

Notes: This table describes the mean of selected characteristics for the
Non-Delhi and the Delhi sample using the “stop” definition (column
1 and 2, respectively). Column 3 reports a 𝑝-value of test of equality
across means of the given variable from the two samples.
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J.2 Difference-in-difference Analysis
We estimate the effect of themask distribution policy using a difference-in-differences specification
of the following form:

𝑌𝑖𝑡 = 𝛼𝑇1(𝑖 in Delhi) +
7∑

𝑠=−3
𝛿𝑠1(𝑡 = 𝑠) +

7∑
𝑠=−3

𝛽𝑠1(𝑖 in Delhi) ∗ 1(𝑡 = 𝑠) + 𝜖𝑖𝑡 (10)

where𝑌𝑖𝑡 is an outcome of interest for individual 𝑖 at week 𝑡. We include week fixed effects (𝛿𝑠) and
allow the treatment effects (𝛽𝑠) to vary among weeks. We use 𝑠 ∈ [−3, 7] to denote the event-time
relative to the first week of treatment. For example, 𝑠 = −1 is the last week of the pre-treatment
period and 𝑠 = 0 is the first week of treatment. We normalize 𝛽−1 = 0 so that all other 𝛽𝑠 are
treatment effects relative to the the last week of the pre-treatment period. We cluster the standard
errors at the bus-stop level.
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Figure J.3: Rollout of Government Mask Program
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Notes: This figure plots weekly averages for children’s mask receipt (fraction of children receiving a mask in
school) from our repeated cross-sectional surveys of respondents in both Delhi and Non-Delhi. Here, the
sample was split between the Delhi and Non-Delhi sample with the “home” definition.
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Figure J.4: DID Estimates of the Government Mask Distribution Program
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(b) Children’s Mask Receipt

(Stop Definition)
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(c) Self-reported Mask Usage
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(d) Self-reported Mask Usage
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(e) Take Up
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(f) Take Up

(Stop Definition)
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Notes: The figure reports the estimated treatment effects (blue) from the DID specification in Eq. (10) for dif-
ferent binary outcome variables across definitions. “Children’s Mask Receipt” is whether the respondent’s
children received a mask through the government policy. “Self-reported Mask Usage” is whether the respon-
dent used a mask in the past week. “Take Up” is whether the respondent took up the mask offer (10INR or
30INR, randomized). 95% confidence intervals (black) are clustered at the bus stop level.
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Table J.3: DID Estimates of Government Mask Distribution (Home Definition)

Children’s Mask Receipt
(1)

Self-Reported Mask Usage
(2)

Take Up
(3)

t - 3 −0.033 0.059 0.012
(0.051) (0.046) (0.034)

t - 2 −0.060 0.013 −0.058
(0.057) (0.045) (0.039)

t 0.089 0.063 −0.044
(0.081) (0.046) (0.038)

t + 1 0.216*** 0.131** 0.024
(0.081) (0.062) (0.028)

t + 2 0.252*** 0.101 −0.023
(0.074) (0.065) (0.038)

t + 3 0.370*** 0.232*** −0.047
(0.077) (0.058) (0.031)

t + 4 0.272*** 0.150** −0.071*
(0.087) (0.065) (0.038)

t + 5 0.085 −0.023 −0.099**
(0.119) (0.057) (0.041)

t + 6 0.144 −0.095 −0.051
(0.106) (0.060) (0.033)

t + 7 0.086 0.038 −0.062
(0.131) (0.059) (0.047)

Observations 1,243 4,745 4,755

Notes: The table reports the estimated treatment effects from the DID specification
in crefeq: DID for different binary outcome variables using the “Home” definition.
“Children’s Mask Receipt” is whether the respondent’s children received a mask
through the government policy. “Self-reported Mask Usage” is whether the respon-
dent used amask in the past week. “Take Up” is whether the respondent took up the
mask offer (10INR or 30INR, randomized). Standard errors in parenthesis are clus-
tered at the bus stop level. Statistical significance indicated by * 𝑝 <0.10, ** 𝑝 <0.05,
*** 𝑝 <0.01.
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Table J.4: DID Estimates of Government Mask Distribution (Stop Definition)

Children’s Mask Receipt
(1)

Self-Reported Mask Usage
(2)

Take Up
(3)

t - 3 0.024 0.028 −0.112***
(0.059) (0.049) (0.035)

t - 2 −0.014 −0.053 −0.062
(0.060) (0.045) (0.039)

t 0.058 0.010 −0.041
(0.086) (0.051) (0.041)

t + 1 0.210** 0.173*** −0.011
(0.098) (0.056) (0.034)

t + 2 0.281*** 0.097* −0.005
(0.091) (0.058) (0.037)

t + 3 0.501*** 0.192*** −0.068**
(0.087) (0.057) (0.034)

t + 4 0.465*** 0.211*** −0.029
(0.097) (0.064) (0.037)

t + 5 0.383*** 0.015 0.012
(0.098) (0.053) (0.035)

t + 6 0.305*** −0.066 −0.041
(0.103) (0.050) (0.031)

t + 7 0.381*** −0.002 −0.095**
(0.123) (0.053) (0.040)

Observations 1,243 4,751 4,763

Notes: The table reports the estimated treatment effects from the DID specification in
crefeq: DID for different binary outcome variables using the “Stop” definition. “Chil-
dren’s Mask Receipt” is whether the respondent’s children received a mask through
the government policy. “Self-reported Mask Usage” is whether the respondent used
a mask in the past week. “Take Up” is whether the respondent took up the mask offer
(10INR or 30INR, randomized). Standard errors in parenthesis are clustered at the
bus stop level. Statistical significance indicated by * 𝑝 <0.10, ** 𝑝 <0.05, *** 𝑝 <0.01.
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