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Abstract

We study whether households engage in climate-related migration in the United

States, a country where most of the population does not regularly experience natural

disasters or work in climate-exposed industries. With comprehensive, long-run data

from both the Census and from tax filings, we document that the extent of the migra-

tion response to unusually warm temperatures increases with the length of variation

examined: decadal shifts in weather have larger annualized impacts than year-over-

year changes. Finally, we provide suggestive evidence that amenity value is an impor-

tant mechanism behind climate-related migration in the United States.
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1 Introduction

Throughout human history, migration has played a pivotal role in shaping societies. The

United States in particular has been defined by waves of migration, beginning with the ar-

rival and westward expansion of European settlers and continuing through the Dust Bowl

and Great Migration. In this paper, we consider a possible driver of the next wave of Amer-

ican migration: climate change. Specifically, we ask two questions essential to understand-

ing the future path of climate-driven migration in the United States. First, to what degree

has historical variation in temperature led to internal migration? Second, to what extent

are migratory responses to short-term variations in temperature informative regarding re-

sponses to more persistent temperature shifts of the sort expected from climate change?

Globally, climate change is expected to drive substantial migration both within and

across countries (Xu et al. 2020). To date, most studies in this space have primarily fo-

cused on migration responses to acute, or “fast-onset” climate-related disasters – such as

droughts, floods, and typhoons (Cattaneo et al. 2019; Boustan et al. 2020; Chen and Lee

2022; Sheldon and Zhan 2022) or on population movements in or from the the developing

world, where much of the population is engaged in activities and sectors which are sen-

sitive to climatic conditions and where the scope for in situ adaptation is limited (Millock

2015; Cattaneo et al. 2019; Piguet, Kaenzig, and Guélat 2018).¹ Evidence on the migration

response of populations in richer countries and on populations who primarily face “slow-

onset” climate change, e.g., gradually increasing temperatures, is comparatively scarce.

Temperature changes relative to local norms are likely to be the most widely experi-

enced effect of global climate change, and whether to migrate is among the most conse-

quential decisions made by individuals and households. Migration in response to rising

temperatures represents a costly adaptation to climate change (Jia et al. 2023) and will also

1. See, for example: in Ecuador (Gray and Bilsborrow 2013), Indonesia (Bohra-Mishra,
Oppenheimer, and Hsiang 2014), Mexico (Saldaña-Zorrilla and Sandberg 2009; Feng,
Krueger, and Oppenheimer 2010), and Pakistan (Mueller, Gray, and Kosec 2014), five coun-
tries in Africa (Gray and Wise 2016), and others (Barrios, Bertinelli, and Strobl 2006; Ash
and Obradovich 2020).
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determine risk exposure profiles of future populations.

Standard models of spatial equilibrium, e.g., Roback (1982), consider household loca-

tion as driven by three generalized factors: wages, rents, and quality of life. Work on the

economic and social impacts of high temperatures predicts changes in outcomes due to cli-

mate change which directly or indirectly influence each of these factors and should there-

fore be expected to alter households’ decisions to migrate (Carleton and Hsiang 2016).²

Whether households in wealthy countries are likely to migrate in response to higher

temperatures is an open question. Economic activity in high-income countries tends to be

less exposed to outdoor conditions and richer households may have greater access to insu-

lating technologies such as air conditioning. On the other hand, more affluent households

may face proportionally lower moving costs: they have more financial resources to sup-

port the relocation process and are more likely to be able to retain their current source of

employment in spite of moving. They may also place more value on non-economic factors

such as the amenity value of cooler or warmer locations. As countries around the world

become richer, their migration responses to climate change are likely to more closely re-

semble those of a historically rich country like the United States. By the end of the century,

many of the world’s largest countries are predicted to be above or near the level of GDP per

capita in the United States during the period we study from the 1950s through 2018 (see

Fig. A.2).

On the scale of human lifespans, climate change induced deviations of weather from

2. Relative to a world without anthropogenic climate change, increasing temperatures
are expected to reduce economic productivity and GDP (Barrios, Bertinelli, and Strobl
2010; Dell, Jones, and Olken 2012; Burke, Hsiang, and Miguel 2015), undermine markers
of population health (Deschênes and Greenstone 2011; Deschênes 2014; Patz et al. 2014;
Shi et al. 2015; Gasparrini et al. 2016; Kjellstrom et al. 2016; Obradovich and Fowler 2017;
Obradovich et al. 2018; Burke et al. 2018; Mullins and White 2019), reduce agricultural
yields (Morton 2007), and challenge social and political stability (Burke et al. 2009; Hsiang,
Burke, and Miguel 2013; Missirian and Schlenker 2017; Carleton, Hsiang, and Burke 2016).
Substantial changes in climate can undermine human well-being through these indicators
or even directly (Baylis 2020), in turn inducing individuals to move (Sjaastad 1962; Green-
wood 1985). Moreover, direct environmental changes tied to warming, such as inundation
due to sea-level rise (Clark et al. 2016; Horton et al. 2014; Jevrejeva, Moore, and Grinsted
2012) or temperature extremes may directly drive residency and migratory choices.

3



historic norms are effectively permanent. To understand temperature-driven migratory

responses to climate change, we must then understand both if migration responds to tem-

perature variation and how such responses evolve as the persistence of local temperature

deviations from long-term norms increases to more closely approximate the permanent

changes in conditions expected from climate change.

In this paper, we empirically examine the temperature-migration relationship and the

evolution of this relationship as temperature changes become more persistent using 1)

decadal, county-level netmigration data derived from theCensus for the period from 1950–

2010 and 2) annual, county-level in- and out-migration data derived from tax filings with

the IRS from 1983–2018. Onto thesemigration data wemap dailymeasures of weather con-

ditions aggregated to the annual and decadal counts of heating and cooling degree-days.

Consistent with the climate impacts literature (Dell, Jones, and Olken 2014), the fixed ef-

fects regression models we specify isolate the causal relationship between locally-unusual

temperature realizations and migration at the county level. We consider the effects of vari-

ation in short-, medium-, and long-term changes in temperature conditions using several

empirical specifications and the two datasets.

We find that longer periods of locally unusual realizations of high temperatures de-

crease migration into a county and increase migration out. Using decadal variation in

weather and the Census data, we find that an increase of 100 cooling degree-days, approx-

imately the average national increase in CDDs since the start of the 20th century, decreases

net migration by 0.78 percentage points on an annualized basis, or about 0.5 standard de-

viations. The magnitudes of these responses are much larger when longer-term variation

in temperatures is used for identification: our estimate from the Census data increases to

1.57 percentage points when considering temperature changes realized across the full sixty

years of our Census sample. Using the annual migration data based on IRS tax returns, we

identify qualitatively similar patterns: annual variation in weather results in almost no im-

mediate migration, but the effect size increases as we consider longer time spans. Using

the IRS data, which provide separate measures of in- and out-migration, we also document
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both less in-migration and more out-migration in the face of warmer temperatures driving

the net effect. The prior persistent changes in local temperature that drive our estimates

are characteristic of future changes expected due to global climate change. As such our

results provide evidence of adaptation to changing temperatures already in progress, in

contrast to other studies which do not find evidence of climate change adaptation in other

domains such as, for example, agricultural production (Schlenker and Roberts 2009; Burke

and Emerick 2016).

To our knowledge, this work is among the first to directly measure the migration re-

sponse to temperature change for the contiguous United States and the first to quantita-

tively consider the importance of the persistence of temperature shocks in driving migra-

tion. In these regards we expand upon Feng, Oppenheimer, and Schlenker (2015) andWin-

kler and Rouleau (2021), respectively. Feng, Oppenheimer, and Schlenker (2015) examine

historical migration and climate data from the U.S., but focus exclusively on the Corn Belt

and find migration responses only for rural counties. Winkler and Rouleau (2021) show

that more high temperature days and the increased incidence of local wildfires in one year

decrease in-migration and increase out-migration for US counties in the subsequent year.

Our work builds on the single-year temperature responses identified in these investiga-

tions to consider how such responses evolve as temperature shifts persist beyond a single

year. Our evidence is also complementary to model-based predictions of migratory sort-

ing under climate change in the United States (Fan, Fisher-Vanden, and Klaiber 2018; Sinha,

Caulkins, and Cropper 2018; Bilal and Rossi-Hansberg 2023) and to recent work that exam-

ines how shifts in population – i.e., births, deaths, and migration combined – respond to

variation in temperature over time (Leduc and Wilson 2023).

Our work is distinct in that we provide direct evidence of both a migration response

to temperature variation for the entire contiguous United States since the 1950s and im-

portantly, how the magnitude of this response increases as identifying variation is lim-

ited to more persistent temperature changes. Our findings also help inform previous ef-

forts to leverage cross-sectional climate variation to identify preferences for different cli-
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mates (Albouy et al. 2016; Sinha, Caulkins, and Cropper 2018) and papers examining cross-

sectional or short-duration correlations between other types of weather variation and mi-

gration (Clark, Nkonya, and Galford 2022).

We make three empirical contributions to the literature on climate-driven migration.

First, we show a direct causal link between persistent temperature increases and migra-

tion within the United States over the last seventy years, with effect magnitudes growing

across longer time scales. Second, we present evidence that increasing temperatures drive

existing residents to leave as well as dissuading potential new residents from choosing

to in-migrate. Third, we show how these effects are stable across a range of dimensions

of economic heterogeneity, suggesting that changing amenity values, in addition to other

economic factors, are likely contributing to our findings. As a result, there is little rea-

son to expect climate-related migration to abate as the U.S. economy continues to evolve

away from climate-exposed industries such as agricultural production. Our estimates sug-

gest that as households and countries become wealthier, shifts in climate-related amenities

could become an increasingly important mechanism for climate-related migration around

the world.

2 Data

Our empirical investigation is based primarily upon Census data and measures of net mi-

gration at the county level for each decade from the 1950s to the 2000s. We also conduct

a secondary set of estimations using data from the Internal Revenue Service (IRS) which

capture annual measures of in- and out-migration at the county level for the period from

1983 to 2018. We link these measures to decadal and annual weather data compiled from

daily measurements provided by Schlenker (2020) and PRISM Climate Group (2004).
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2.1 Decadal migration (Census)

We obtain counts of net migration for each county-decade from a dataset compiled byWin-

kler, Johnson, Cheng, Beaudoin, et al. (2013). This dataset combines the efforts of several

previous research teams (White, Mueser, and Tierney 1992; Voss et al. 2005; Fuguitt, Beale,

and Voss 2010; Winkler, Johnson, Cheng, Voss, et al. 2013; Bowles et al. 2016) to identify

net migration by county from the 1950s to the 2000s. We refer readers interested in a de-

tailed description of the dataset to Winkler, Johnson, Cheng, Beaudoin, et al. (2013) and

summarize here.

Net migration counts in this data are estimated using the “forward residual method,”

which follows the logic that changes in population counts are completely determined by

births, deaths, and moves into or out of a county. Because population, births, and deaths

are all precisely measured, this method obtains a equally precise measure of net migration

by examining howpopulations change net of births and deaths. Its drawback is that it is not

possible to use this method to generate separate counts of in-migration and out-migration.

Formally, the forward residual method starts with the Census-measured population

in each county at the start of each decade. It then estimates an expected population at

the end of the decade by adding births and subtracting deaths from confidential datasets

held by the National Center for Health Statistics. The count of net migrants is computed

as the difference between the observed population at the end of decade and the expected

population described above. Mathematically, net migration counts for a single county in

time period 𝑡 are computed as follows:

Net migration𝑡 ≡ Population𝑡 −
Expected population𝑡︷                                       ︸︸                                       ︷

Population𝑡−1 + Births𝑡 −Deaths𝑡

This method can also be used within subsets of the data to identify, e.g., net migration

counts for individuals within specific age brackets. We refer to this dataset as the “Census

data” hereafter. By convention in the dataset and the demographic literature, themigration
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rate is calculated as the number of net migrants over each decade divided by the expected

population at the end of the decade. The data include more than 3,000 counties observed

for all decades between 1950 and 2010, and we construct overall and age-group specific net

migration rates for 0–18, 18–55, and 55+ from these data, where age is given as the age at

end of decade.

2.2 Annual migration (IRS)

We derive measures of migration for the second dataset from publicly available IRS Statis-

tics of Income (SOI) Tax Statistics - Migration Data, which is based on year-to-year address

changes on individuals’ tax filings. These data provide counts of inflow and outflow mi-

gration for each county-year. To facilitate the comparison of estimates based on the Census

data, we calculate net migration rates as the difference of inflow minus outflow migration

counts divided by the starting population. Inflow and outflow rates are also calculated as

the ratio of each to the county’s start-of-year population.

We refer to this dataset as the “IRS data” hereafter. Because the IRS data are based on

tax filings, migration and population counts are tallies of filed “returns” and claimed “ex-

emptions” which are considered to proxy for households and individuals.³ We use annual,

county-level measures of net-, in-, and out-migration from the IRS data for 1983 through

2018. Relative to the Census data, the IRS data capture a shorter time period, are less rep-

resentative of the full population as they capture only households which file taxes before

the end of September in two successive years and can be linked between tax cycles (Gross

2003). As a result, the poor, very rich, and elderly are underrepresented in the IRS data,

and the migrating population is measured with some noise.

3. See the SOI website for complete information, and a discussion of the sample popu-
lation of regular tax filers: https://www.irs.gov/statistics/soi-tax-stats-migration-data.
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2.3 Weather and climate

We measure climatic variation using a fine-scaled gridded dataset of daily weather data

provided by Schlenker (2020). These data are built on the PRISM Climate Group weather

dataset (PRISM Climate Group 2004), but are distinct from their daily (AN81d) product as

they are built from a balanced panel of weather stations, and are available at the daily level

back to 1950 (whereas the PRISM Climate Group daily product is only available from 1980

onwards).⁴

These data provide daily measures of temperature and precipitation from 1950 to 2019,

computed for 4 kilometer square (roughly 0.05 by 0.05 degrees) grid cells covering the

United States. We first compile measures of the number of heating and cooling degree

days (HDD and CDD)⁵ and total precipitation in each year for each grid cell. Then, we take

population-weighted averages for each county using gridded population data fromCIESIN

(2017). The resulting county-year measures represent the average climate experienced by a

household in a given county-year and are merged onto the IRS measures of migration. For

the Census data, averages of annual conditions during each decade are merged onto each

county-decade record.

2.4 Descriptive evidence

Tables A.1 and A.2 give descriptive statistics for the Census and IRS datasets. The Census

data are a balanced panel covering nearly all of the counties in the contiguous United States

from the six decades between the 1950s and the 2000s. The IRS dataset represents county-

year net migration for nearly all of the counties in the contiguous United States between

1983 and 2018, although around 300 counties do not report migration counts in all 36 years.

4. The datawe use are downloadable here: http://www.columbia.edu/~ws2162/links.
html. See notes by Schlenker for more details on data construction.

5. CDD is the sum of the count of degrees by which daily average temperatures exceed
18.3 C (65 F) in a year. HDD is the analogous sum of the degrees by which daily average
temperatures fall below 18.3 C in a year. For example, a daywith an average temperature of
25.3Cwould add 7CDD to the annual total. This is the samedefinition ofHDD/CDDas the
one used by NOAA: https://www.nesdis.noaa.gov/news/heatingcooling-degree-days.
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To maintain consistency across the two datasets, we compute “annualized” net migra-

tion rates in percentage terms (i.e., decadal net migration divided by the expected popu-

lation at the end of the decade, divided by 10 to annualize, and multiplied by 100 to be in

percentage terms) for the decadal data. These annualized migration rates are distributed

around zero, with an average of around 0.04%, and have a standard deviation of 1.7%. In

the IRS data, we compute annual net migration rates for each county-year. Migration rates

in the IRS data have a mean of 0.14% and a standard deviation of 1.6%. The IRS data also

allow us to observe in- and out-migration separately, both of which average around 4,300

in- or out-migrants per county-year in our sample. The average county in the United States

experiences more HDDs (2,800) than CDDs (690), and the standard deviations for HDDs

and CDDs are 1200 and 440, respectively.

The left panels of Fig. 1 illustrate the average number of cooling degree days and net

migration by county over the course of the Census data. Over the period of our sample,

populations tended to flow out of the middle of the country toward the coasts and into the

south – the so-called “hollowing-out” of America (Molloy, Smith, and Wozniak 2011). As

shown in the top left panel, these destination locations also tend to be warmer than the lo-

cations experiencing fewer incoming migrants. Because we are interested in studying how

changes in climate conditions (rather than differences in average climate conditions) impact

migration, we control for cross-sectional variation of the type represented by the visual

comparison of the top and bottom panels on the left of Fig. 1 by comparing within-county

changes between the 1950s and the 2000s in the number of CDDs and the migration rate,

additionally controlling for differences betweenCensus Region. This variation is illustrated

by the maps in the right column of Fig. 1.

3 Methods

The objective of this study is to identify the causal effects of variation in climate of differing

frequencies on migration patterns. To do so, we use two distinct empirical specifications,
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each of which is estimated using the Census data and the IRS data separately.

The first specification is a panel model with period-of-observation fixed effects that lim-

its identifying variation to the period of observation, which is a decade for the Census data

and a year for the IRS data (Timmins and Schlenker 2009; Kalkuhl and Wenz 2020; Kol-

stad and Moore 2020). The second specification – labeled “long differences” – allows for

identification based on variation across the length of the sample periods, which are 60 and

36 years for the Census and IRS datasets respectively (Hsiang 2016; Burke and Emerick

2016; Kolstad and Moore 2020). In order to eliminate the consideration of cross sectional

variation (and therefore the relationships visible in Fig. 1), all of the models we estimate

include county fixed effects or are estimated using within county differences. By design,

the specifications differ in the period length of variation captured by the estimates.

Panel model. The panel model estimates the impact of within-period variation in tem-

peratures on migration rates. Letting 𝑖 and 𝑡 index counties and relevant time periods

respectively, we estimate the following specification:

Migration rate𝑖𝑡 = 𝛽𝐻HDD𝑖𝑡 + 𝛽𝐶CDD𝑖𝑡 + 𝛽𝑃Precip𝑖𝑡 + 𝜙𝑖 + 𝜙𝑟𝑡 + 𝜀𝑖𝑡 (1)

In Eq. (1), Migration rate𝑖𝑡 is the annual migration rate for county 𝑖 in period 𝑡. Our

mainmeasure ofmigration is netmigration, thoughwe also consider in- and out-migration

rates based on the IRS data. In the Census data, for which the relevant period is a decade,

variables capture the annual averages across decade, 𝑡. HDD𝑖𝑡 and CDD𝑖𝑡 are the annual

number of heating and cooling degree days for the period (averaged for the decade in the

case of the Census data). Precip𝑖𝑡 is the total annual precipitation in the county-period. Be-

cause values represent annual measures in both datasets, coefficient magnitudes are com-

parable across the two and can be interpreted as the effect on annual migration rates of a

one-unit-per-year change in the considered weather variable.

County and Census Region-by-period fixed effects are represented by 𝜙𝑖 and 𝜙𝑟𝑡 . The

model is identifiedusingwithin-county variation in temperature after accounting for region-
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wide trends (separately for each of the four Census Regions) and period-specific idiosyn-

crasies in temperature realizations, consistent with the existing literature that estimates the

impact of climate change on economic outcomes (Dell, Jones, and Olken 2014). In words,

these estimates are causally identified using county-periods that had an unusually hot or

cold period relative to both their own baselines and relative to other counties in their Cen-

sus Region for that period.

We highlight that the panel model is identified from period-to-period variation, which

is annual in the IRS data and decadal in the Census data. Given the pace of migratory

decisions and flows, we consider year-to-year variation as short-term in this context, and

decade-to-decade variation as medium-term.

Long differences model. To document long-run effects, we estimate a “long differences”

model that uses within-Census Region variation by county to observe whether areas with

different long-run changes in climatic conditions experienced different changes in migra-

tion rates. This approach is similar to the empirical design deployed by Burke and Emerick

(2016) and is also described in Hsiang (2016).

More specifically, we estimate the model by computing the differences in net migration

and climate measures between two time periods at the beginning and end of our samples

(e.g., the 1950s and the 2000s in the Census data) and regressing the differences in net

migration on the differences in climate measures, along with a Census Region fixed effect.

For the IRS data, the early and late periods are 5-year averages of the relevant variables. As

the Census observations already represent multi-year aggregates, no additional smoothing

is undertaken for specifications using the Census datasets.

To develop intuition for this model, consider the right panels of Fig. 1. These two maps

show county-level changes between the 1950s and 2000s in the average number of cooling

degree days each year and in net migration rates after controlling for average changes by

Census Region. The logic of the model is to isolate long-run differences in climate that

are plausibly random from regional variation in temperature that could correlate with re-

gional trends inmigration that are unrelated to climate. To do so, we estimate the following
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statistical specification:

migration rate𝑖 = 𝛽𝐻HDD𝑖 + 𝛽𝐶CDD𝑖 + 𝛽𝑃Precip𝑖 + 𝜙𝑟 + 𝜀𝑖 (2)

Eq. (2) gives the estimating equation for the long differences approach, which we apply

to both the Census and IRS datasets. The start and end periods are the 1950s and the 2000s

in the Census data, and 1983–1987 and 2014–2018 in the IRS data. We denote differences in

a variable between the start and end periods with an over-bar as follows: migration rate𝑖
is the change in annual net migration rate, HDD𝑖 and CDD𝑖 are the changes in the average

annual number of heating and cooling degree days, and Precip𝑖 is the difference in the

average annual precipitation. 𝜙𝑟 is a Census Region fixed effect, which controls for any

Census Region-specific changes in migration, temperature, or precipitation and implies

that our coefficient estimates 𝛽𝐻 , 𝛽𝐶 , and 𝛽𝑃 are identified using within-county variation

based on comparisons within the same Census Region. Such variation excludes the cross-

sectional variation leading to the heat-seeking and hollowing out effects visible in Fig. 1.

4 Findings

4.1 Decadal estimates (Census)

Table 1 reports our main estimates based on annualized measures of net migration from

the Census data, in which the panel estimates are based on decade-to-decade variation

and the long-differences model leverages variation across 60 years. Negative coefficient

estimates indicate lower net migration which could be arising from higher out-migration

and/or reduced in-migration. Our focus is the coefficients on cooling degree days (CDD)

as our primary interest is the responsiveness of migration to increasingly hot conditions.

Column 1 of Table 1 reports estimates based on a model with county and decade fixed

effects. We find that an increase in 100 cooling degree days depresses net migration in a
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county by 0.91 percentage points. This model controls for unobserved variation between

counties and across time but could still be confounded by correlated regional trends: for

example, if the Southwest, which experienced somewarming as a region during our sample

period, also saw increased migration during that time for reasons unrelated to both its

climate and a regionally specific change in climate, it could bias the estimate on CDDs

upward.

For this reason, estimates from our preferred panel specification, described by Eq. (1),

are given in the second column. This specification replaces the decade fixed effects with

Census Region by decade fixed effects to account for region-wide time trends or shocks. We

find that this additional set of fixed effects does not substantially alter the estimates, with

each 100 CDDs depressing net migration by 0.78 percentage points, or about 0.5 standard

deviations (SDs) of the net migration rate in our sample.

The third and fourth columns of Table 1 reflect the long differences estimate described

by Eq. (2) without, and then with, Census Region fixed effects. These long difference esti-

mates capture the long-run effects of changes to climate over time. Compared to the panel

model, we find similarly signed but larger in magnitude estimates, such that an increase of

100 CDDs leads to a decrease of 1.57 percentage points, or about 0.92 SDs, in net migration,

based on the more saturated specification.

To benchmark this effect, the average county has experienced an increase of about 100

CDDs per year between the 1950s and 2000s. Our estimates imply that counties that ex-

perienced this amount of warming would see a decline in net migration of about 0.75–1.5

percentage points, depending on whether the medium-run (panel) or long-run (long dif-

ferences) coefficient estimate is used.

The estimates in Table 1 are based on linear measures of heating and cooling degree

days. Fig. 2 compares estimates from the degree-days specification reported in Column 2

of Table 1 with estimates from models that allow temperature to enter either in five degree

bins or as a spline, following Schlenker and Roberts (2009). The figure shows that more

flexible functional forms of temperatures capture comparable relationships in the data. For
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this reason, we focus on degree-day specifications for the remainder of the paper.

The coefficient on CDD approximately doubles between columns (2) and (4) in Ta-

ble 1, suggesting that responsiveness to long-term changes in temperatures are substan-

tially larger than responses to decadal-scale temperature variation. The online appendix

includes a range of sensitivity checks, none of which alter the substantive conclusions pre-

sented here: Figs. A.3 and A.4 show the sensitivity of the estimates to Winsorizing the

net migration rate variable, using alternative sets of fixed effects, estimating unweighted

regressions, and other possible combinations of those choices. Fig. A.8 estimates an alter-

native long-run estimation strategy called “trends-on-trends“ with the Census data and

finds similar results to those obtained with the long-differences estimation.

4.2 Annual estimates (IRS)

In order to consider responses to short-term variation, we turn to estimates based on annual

measures of net migration from the IRS data. In contrast to the Census-based measures in

the previous section, net migration in this dataset is directly measured from tax filings and

is representative of the population that files taxes. In spite of these measurement and sam-

ple differences and the shorter time period covered, the estimates for the CDD coefficient

in Columns (1) and (2) of Table 2 show consistent evidence that increased temperatures in

a given county result in reduced net migration.

With the annual IRS data, panel estimates represent effects of year-to-year variation,

while long-differences estimates capture the effects across the 30+ year span of the sample.

Comparing estimates on CDDs reported in Columns (1) and (2) of Table 2, the estimated

effect of 100 additional CDDs is a decrease of 0.02 percentage points based on the panel

model and year-to-year variation, but 0.40 percentage points based on the long differences

specification. Responsiveness of net migration to increasing temperatures in a given loca-

tion is small inmagnitudewhen only short-termvariation is considered and is substantially

stronger when longer term variation is considered.
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4.3 In- and out-migration estimates (IRS)

The structure of the IRS data allows for the decomposition of net-migration rates into sep-

arate measures for in- and out-migration for each county and year. We can investigate

these measures separately as a means of assessing the extent to which temperature varia-

tion impacts migration by “pushing” existing residents to leave versus “pulling” outside

residents to move in. Estimates of the panel and long-differences models using the in- and

out-migration rates as outcome variables are presented in columns 3–6 of Table 2.

Higher temperatures are associated with no significant responses in out-migration in

the panel specification while estimates based on long-differences show that increases in

CDDs drive significant out-migration. In-migration falls in response to increases in CDDs

in both the panel and long-differences specifications, though the magnitudes are substan-

tially larger with long-differences. The increases in unusually hot local conditions appear

to reduce in-migration pull factors over both the short- and longer-terms, and increasing

the push to out-migrate over the longer term. Notably, the coefficient magnitudes on CDDs

for in- and out-migration are essentially equal in the long-differences specifications, sug-

gesting that our main estimates are driven meaningfully by responses among both existing

and potential residents.

4.4 Determinants of decadal migration (Census)

Having established that migration in the United States is responsive to changes in climate

and that those responses increasewith the length of climate variation considered, we return

to the Census data to investigate heterogeneity in responsiveness. We examine how the

effects differ by the type of county, by age group, and by decade.

By county type. We first consider whether rural counties, which are likely to be more

reliant on climate-exposed industries, experience larger magnitude responses to changes

in climate. We find larger magnitude effects in urban counties. While some portion of the

larger effect in urban areasmay be attributable to increases in both urban-heat-island effects

and urban cost-of-living over the study period, these estimates suggest ourmain results are
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not driven solely by financial necessity or occupational considerations in rural areas.

The second set of estimates in Fig. 3 shows that effects do not differ for warm versus cool

counties, suggesting regular exposure to high temperatures does not facilitate in situ adap-

tation to changes in climate. Finally, we consider whether wealthier counties demonstrate

a higher propensity to migrate in response to temperature shocks, and find suggestive ev-

idence they do, which may imply budget constraints still restrict migratory flows to some

degree, even in rich countries.

These estimates should be interpretedwith some caution for two reasons. First, they are

reliant on cross-sectional variation in the response of migration to temperature, and could

represent other correlated factors dictating migratory responses than those we quantify

here. Second, we estimate analogous models for the long-run effect of CDDs on net mi-

gration using the IRS data in Fig. A.7 and find results that are inconsistent with those we

document above: in the IRS migration data, rural counties respond more than urban coun-

ties, and rich counties do not respond any more (or less) than poor counties. Because of

the limitations of the IRS data (discussed in Section 2) are magnified by these increasingly

demanding specifications, we place more evidentiary weight on the Census data and em-

phasize them here.

By age. We next consider heterogeneity by age, using age-group-specific net migration

rates from the Census data. As shown in Fig. 3, we find that responsiveness to high tem-

peratures increases in age. While all age groups increase migration away from warming

counties on net, the oldest groups have a larger response than working age groups, who

have a larger response than the young. This pattern is again consistent with the identi-

fied migratory responsiveness to temperature resulting, at least in part, from changes in

amenity values.

By decade. Finally, we examine the degree to which the effect of cooling degree days on

net migration has changed over time. To do so, we estimate the same model but allow the

effect of cooling degree days to vary by decade. We find that the effect is stable, suggesting

that the secular transition away from agricultural employment over the study period is not
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an important feature driving our results.

The stable magnitude of the temperature-migration relationship over time also stands

in contrast to the dramatic decline in themagnitude of the heat-mortality relationship iden-

tified by Barreca et al. (2016) over the latter half of the twentieth century. In light of that

study’s attribution of the shrinking of the heat-mortality effect to the diffusion of air con-

ditioning, our results suggest that technological adaptation to heat via adoption of air con-

ditioning has not supplanted migration as a means of adapting to higher temperatures.

5 Discussion

Temperature increaseswill be themostwidely experienced impact of global climate change,

and exposure to such higher temperatures is associated with a range of negative social and

economic outcomes (Carleton and Hsiang 2016). In this paper, we first show that changes

in temperature induce migration responses, even in one of the wealthiest (and in principle

most climate-shielded) countries in the world. We find that the American population has

responded to warming temperatures by shifting away from areas experiencing tempera-

ture increases relative to local norms. Second, we find that this response is attributable to

temperature increases that persist over medium- to long-term horizons – exactly the type

of warming expected to be brought on by global climate change.

This net migration response is driven both by increases in out-migration and decreases

in in-migration at the county level. We also show that the sensitivity ofmigration to locally-

unusual high-temperature realizations has been consistent since the 1960s. Our estimates

are therefore plausibly informative about likely responsiveness to future temperature changes.

Migration in response to local temperature increases realized over the long-term rep-

resent a direct measure of adaptation to climate change. While past studies have found

little evidence of adaptation, even in the particularly climate-exposed sector of agriculture,

our results provide direct evidence that populations in the United States are in fact adapt-

ing to changes in climate. Recognition of such adaptation is critical for valid estimation of
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future damages from climate change for two distinct reasons. First, large-scale migration

in response to temperature changes produced by climate change represents a substantial

additional – and underappreciated – adaptation cost, as even internal migration is costly

(e.g., Kennan and Walker 2011; Bayer and Juessen 2012). Second, adaptation via migration

will alter the profile of future climatic exposures realized under climate change as future

population distributions may differ substantially from those observable today.

Our findings indicate that climate amenities are likely to be an important driver of mi-

gration in the context we study. More speculatively, they suggest that as other countries

continue to grow wealthier migration globally may become more responsive to climate-

driven amenity shifts. Moreover, our evidence suggests that while these migration re-

sponses may not be obvious over shorter time horizons, they will manifest in meaningful

ways over longer periods of sustained climate change.
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Figure 1: Climate and Net Migration, 1950s to 2000s
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Notes: Maps show climate and net migration by county between the 1950s and the 2000s.
Top left: Average annual cooling degree days between 1950 and 2009. Bottom left: Total net
migration as a percent of 1950s expected end-of-decade population between the 1950s and
2000s. Top right: Change in the average number of cooling degree days between the 1950s
and 2000s, residualized by Census Region. Bottom right: Change in net migration rates
between the 1950s and 2000s, residualized by Census Region.

20



Figure 2: Impact of temperature on decadal net migration (Census)
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Notes: Figure shows the impact of decadal temperature on net migration. The height of
each line is the estimated impact of replacing one day per year with an average tempera-
ture of 18.3 Cwith one day per year at the indicated average temperature on the annualized
net migration rate. Each line documents a separate regression using the given function of
temperature. “Binned” shows five-degree bins of the count of days with average temper-
ature in the given bin, with the 15-20 C bin omitted, “Degree-days” shows heating and
cooling degree days, each computed relative to an average temperature of 18.3 C (65 F),
and “Spline” shows a B-Spline in average daily temperature, with internal knots at 10, 20,
and 30 C and boundary knots at 0 and 40 C. All regressions include county and region-
decade fixed effects and are weighted by the expected county population at the end of the
1950s. The shaded 95% confidence interval on the degree-days model is computed using
standard errors clustered by county.
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Figure 3: Heterogeneous effects of CDDs on net migration (Census)
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Notes: Figure shows coefficient estimates for effect of 100 CDDs on net migration rate
(in percentages), split by various dimensions of heterogeneity. Except for the effects by
age group, each set of estimates is produced by a regression of net migration rate on
HDD, CDD, precipitation and their interactions with the given dimension, plus county
and Census-Region-decade fixed effects. Urban counties are those in metropolitan areas
with more than 250,000 residents in 1983, rural counties are all other counties. Warm coun-
ties are those with above-median average cooling degree days between 1950 and 2009. The
effects by age group are estimated using separate models where the left-hand side variable
is the net migration rate for the relevant age group. Standard errors clustered by county
and vertical represent 95% confidence intervals.
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Table 1: Impact of climate on decadal migration (Census)

Net migration rate (%)
Panel LD

(1) (2) (3) (4)

HDD (100s) -0.02 -0.03 0.19∗ -0.11
(0.04) (0.04) (0.11) (0.13)

CDD (100s) -0.91∗∗∗ -0.78∗∗∗ -1.20∗∗∗ -1.57∗∗∗
(0.11) (0.12) (0.20) (0.24)

Precip. (100s mm) -0.08∗∗ -0.09∗∗ -0.04 0.00
(0.03) (0.04) (0.09) (0.09)

County FE ✓ ✓
Decade FE ✓
Region-Decade FE ✓
Region FE ✓

Observations 18,306 18,306 3,051 3,051
Within R2 0.08 0.05 0.13
Outcome mean 0.04 0.04 1.14 1.14
Outcome SD 1.71 1.71 2.06 2.06

Notes: Table shows estimate of heating and cooling degree-
days on decadal net migration. Decadal net migration is
the annualized rate of net migration as a percentage of
total population at the start of decade. HDD (100s) and
CDD (100s) are hundreds of heating and cooling degree
days per year. Precip. (100s mm) is the amount of rain-
fall in a year in hundreds of mm. The first two columns
show panel estimates, where each observation is a county-
decade. The second two columns should long difference
estimates, where observations are differences between the
first and the last decades in the sample (1950s and 2000s).
Regions are census regions. Standard errors clustered by
county.
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Table 2: Impact of climate on annual migration (IRS)

Net migration rate (%) Out-migration rate (%) In-migration rate (%)
Panel LD Panel LD Panel LD
(1) (2) (3) (4) (5) (6)

HDD (100s) -0.01∗ -0.14∗∗∗ 0.02∗∗∗ 0.19∗∗ 0.01∗ 0.04
(0.01) (0.05) (0.01) (0.09) (0.01) (0.09)

CDD (100s) -0.02∗∗ -0.40∗∗∗ -0.01 0.20∗∗ -0.04∗∗∗ -0.20∗
(0.01) (0.07) (0.01) (0.09) (0.01) (0.10)

Precip. (100s mm) -0.01∗∗ 0.02 0.01∗∗∗ 0.03 0.00 0.05
(0.00) (0.03) (0.00) (0.04) (0.00) (0.04)

County FE ✓ ✓ ✓
Region-Year FE ✓ ✓ ✓
Region FE ✓ ✓ ✓

Observations 108,742 3,033 108,742 3,033 108,742 3,033
Within R2 0.00 0.05 0.00 0.01 0.00 0.01
Outcome mean 0.14 0.28 6.27 -0.90 6.41 -0.62
Outcome SD 1.56 1.40 2.09 1.63 2.49 1.83

Notes: Table shows estimate of heating and cooling degree-days on annual rates of net, in-, and
out-migration by county. Net migration is the rate of annual net migration in percentages of to-
tal population at the start of the year. Out-migration is the rate of annual out-migrants leaving
the focal county, and in-migration is the rate of annual in-migrants moving to the focal county.
HDD (100s) and CDD (100s) are hundreds of heating and cooling degree days per year. Pre-
cip. (100s mm) is the amount of rainfall in a year in hundreds of mm. The first, third, and fifth
columns show panel estimates, where each estimate is a county-year. The second, fourth, and
sixth columns show long difference estimates, where observations are differences between the
averages of the first five and last five years in the sample (1983–1987 and 2014–2018). Regions
are census regions. Standard errors clustered by county.
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ONLINE APPENDIX
This appendix includes supplementary material for Baylis, Bharadwaj, Mullins, and

Obradovich (2023). Appendix A provides additional information on the data collection

process. Appendix B documents sensitivity checks not included in the main paper.

A Detailed data description

A.1 Summary statistics

Table A.1 documents summary statistics for the decadal dataset, and Table A.2 does the

same for the annual dataset.
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Table A.1: Decadal data summary (Census)

Coverage
County-decades 18,306
Counties 3,051
Decades 6
Years covered 1950 – 2010

Variables
Mean SD Min P50 Max

Net migration rate (%) 0.044 1.7 −5.3 −0.12 25
Net migrants (1,000s) 2.2 30 −749 −0.17 1171
Population (1,000s) 76 265 0.059 22 10 526
HDD (100s) 28 12 0.4 27 64
CDD (100s) 6.9 4.4 0 6.1 25
Precip. (100 mm) 9.8 3.6 0.56 10 27

Notes: Table summarizes descriptive statistics for decadal (Census)
dataset. Each observation is a county-decade. All 3,051 counties ap-
pear in all six decades of the data. Net migrants is the number (in
thousands) of in-migrants minus out-migrants in that county-decade,
accounting for births and deaths (see text for details). Population is
expected county population by end-of-decade, assuming no migra-
tion occurred. The net migration rate is the number of net migrants
for a given county-decade divided by population, divided again by 10
(to annualize the rate), and multiplied by 100 (to represent a percent-
age). HDD and CDD are annual average counts of hundreds of heat-
ing degree days and cooling degree days, computed as the sum total
number of degrees below or above 18.3 C, averaged across each year
in the decade. Precipitation is the average total precipitation in each
year in the decade.
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Table A.2: Annual data summary (IRS)

Coverage
County-years 108,742
Counties 3,045
Years 36
Years covered 1983 – 2018

Variables
Mean SD Min P50 Max

Net migration rate (%) 0.14 1.6 −32 0 61
In-migration (# Exemptions, 1000s) 4.3 11 0 1.2 258
Out-migration (# Exemptions, 1000s) 4.3 12 0.015 1.1 352
Net migrants (# Exemptions, 1000s) 0.022 3.1 −181 0 121
Population (# Exemptions, 1000s) 73 233 0.2 19 8100
HDD (100s) 27 12 0.062 27 67
CDD (100s) 7.1 4.5 0 6.3 28
Precip. (100 mm) 10 4 0.17 10 34

Notes: Table summarizes descriptive statistics for annual (IRS) dataset. Each ob-
servation is a county-year. Of the 3,045 counties, 2,706 appear in all 36 years of the
data. In-migrants is the number of tax exemptions filed in a year by newcomers
to the county, out-migrants in the number of tax exemptions filed by households
who exited the county. Net migration is the in-migrants minus out-migrants.
Population is the total number of tax exemptions filed by households who began
the year in the county. The net migration rate is net migration divided by popu-
lation and multiplied by 100 (i.e., it is a percentage). HDD and CDD are annual
counts of heating degree days and cooling degree days, computed as the sum
total number of degrees below or above 18.3 C. Precipitation is the total precipi-
tation in the year.
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A.2 Additional county characteristics

We include several time-invariant county characteristics in the data to classify counties as

urban or rural, warm or cool, and high income or low income. In order to accurately rep-

resent the distribution of these characteristics across our sampling frame, we attempted

to use measurements from as close to the midpoint of the time period we study (1950s to

2000s). We define those distinctions as follows, and Fig. A.1 provides the associated maps.

Urban / rural counties. The rural/urban indicator we use comes from the Rural-Urban

Continuum Codes provided by the U.S. Department of Agriculture. We consider counties

urban if they have a code of 1, 2, or 3, i.e., are in a metro area with a population of 250,000

people or more. We use the code from 1983 to approximate the middle of our time frame.

Warm / cool counties. We compute long-run average temperature cooling degree days by

county from 1950 to 2010 and define counties as “warm” if their cooling degree days exceed

the median – roughly 621 CDD – of the distribution over these averages. The remaining

counties are defined as “cool”.

High / low income. We define high income counties as those with household average

income above the county median in 2000, which is around $34,000.
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Figure A.1: County Characteristics

Rural county
Urban county

Warm county
Cool county

High income county
Low income county

Notes: Maps of county characteristics. Rural and urban county definitions follow 1983 def-
initions of rural and urban counties from the U.S. Department of Agriculture. Warm coun-
ties are thosewith abovemedian average annual CDDs, and high income counties are those
with above median household income in 2000.
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A.3 Projections of GDP per capita by country

Fig. A.2 presents projections of GDP per capita by country under the second shared socio-

economic projection, SSP2 (Riahi et al. 2017). These projections are used as inputs for inte-

grated assessment models of climate change. SSP2 is described by Riahi et al. (2017) as the

“Middle of the Road (Medium challenges to mitigation and adaptation)” pathway.
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Figure A.2: Projections of GDP per capita by country (SSP2)
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Notes: Projections of GDP per capita by country under SSP2 (Riahi et al. 2017).
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B Sensitivity

B.1 Sensitivity curves

This section documents the sensitivity of the estimates to various specification choices.

Figs. A.3 and A.4 show the sensitivity of the estimates using decadal (Census) data

across panel and long-differences specifications. The estimates are consistently negative

and statistically different from zero. Net migration rate (Winsorized) is the net migration

rate truncated at the 1st and 99th percentiles.
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Figure A.3: Sensitivity curves for decadal (Census) data – Panel models
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Notes: Figure shows coefficient estimates for the effect of 100 CDDs on the net migration
rate measured in the decadal (Census) data using panel models and the given left-hand
side (LHS), fixed effects (FE), andweights, where the right-hand side always includesHDD,
CDD, and precipitation. Net migration rate is the number of net migrants divided by the
expected population at the end of the decade in the absence of migration. Net migration
rate (Winsorized) is the net migration rate truncated at the 1st and 99th percentiles. 1950s
expected population weights use the expected population in a county at the end of the
1950s in the Census data as weights for that county. Estimates indicated in red are those
reported in the main text. Thick lines and thin lines behind coefficients represent 90% and
95% confidence intervals, respectively.

41



Figure A.4: Sensitivity curves for decadal data (Census) – Long differences models
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Notes: Figure shows coefficient estimates for the effect of 100CDDs on the netmigration rate
measured in the decadal (Census) data using long differences models and the given left-
hand side (LHS), fixed effects (FE), and weights, where the right-hand side always includes
HDD, CDD, and precipitation. Netmigration rate is the number of netmigrants divided by
the expected population at the end of the decade in the absence ofmigration. Netmigration
rate (Winsorized) is the net migration rate truncated at the 1st and 99th percentiles. 1950s
expected population weights use the expected population in a county at the end of the
1950s in the Census data as weights for that county. Estimates indicated in red are those
reported in the main text. Thick lines and thin lines behind coefficients represent 90% and
95% confidence intervals, respectively.
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Figs. A.5 and A.6 show the sensitivity of the estimates using annual (IRS) data across

panel and long-differences models. The estimates using these data are somewhat less con-

sistent than those using the decadal (Census) data, but are also negative and statistically

different from zero. We note that themagnitudes of the estimates are consistently larger for

the long-differences specifications than the panel specifications, consistent with a growing

response to more persistent climate shifts.
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Figure A.5: Sensitivity curves for annual data (IRS) – Panel models
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Notes: Figure shows coefficient estimates for the effect of 100 CDDs on the net migration
rate measured in the annual (IRS) data using panel models and the given left-hand side
(LHS), fixed effects (FE), and weights, where the right-hand side always includes HDD,
CDD, and precipitation. Net migration rate is the number of net migrants divided by the
expected population at the end of the decade in the absence of migration. Net migration
rate (Winsorized) is the net migration rate truncated at the 1st and 99th percentiles. 1950s
expected population weights use the expected population in a county at the end of the
1950s in the Census data as weights for that county. Estimates indicated in red are those
reported in the main text. Thick lines and thin lines behind coefficients represent 90% and
95% confidence intervals, respectively.
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Figure A.6: Sensitivity curves for annual data (IRS) – Long differences models
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Notes: Figure shows coefficient estimates for the effect of 100CDDs on the netmigration rate
measured in the annual (IRS) data using long differences models and the given left-hand
side (LHS), fixed effects (FE), andweights, where the right-hand side always includesHDD,
CDD, and precipitation. Net migration rate is the number of net migrants divided by the
expected population at the end of the decade in the absence of migration. Net migration
rate (Winsorized) is the net migration rate truncated at the 1st and 99th percentiles. 1950s
expected population weights use the expected population in a county at the end of the
1950s in the Census data as weights for that county. Estimates indicated in red are those
reported in the main text. Thick lines and thin lines behind coefficients represent 90% and
95% confidence intervals, respectively.
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B.2 Comparing estimates from decadal and annual data

Table A.3 documents a comparison of estimates obtained from the Census (decadal) and

IRS tax return (annual) datasets. The goal of this exercise is to highlight how the period

examined affects the estimated relationship between climate and migration and to help

reconcile the differences between the results in Table 1 and Table 2.

Column (1) shows the decadal estimate using the same specification given in Table 1,

column (2), but restricted to only use data from 1980–2010. The remaining columns use

the IRS data only, taking averages over the periods given: 1 year (no averaging), 3 years, 5

years, and 7 years.

Column (1) is comparable to the estimate we document in the main paper, though the

different time period yields a slightly smaller estimate. Column (2) estimates the panel

model on the annual data from the IRS, i.e., it reproduces column (1) in Table 2: the es-

timate is statistically different from zero, but more than an order of magnitude smaller

than the one estimated in the decadal data. The remaining three columns show how the

remaining estimates of the effect of CDDs become more similar to the decadal estimates

when aggregating of 3, 5, and 7 years.⁶

B.3 Heterogeneity in estimates using IRS data

??

Fig. 3 in themain text estimates the effect of 100CDDs ondecadal netmigration. Fig. A.7

here does the sameusing the annual IRSdata. To increase the comparability of the estimates

in terms of the temporal variation, we use the long differences specification used in column

(2) of Table 2 plus interactions between HDD, CDD, and precipitation and the relevant

dimension of heterogeneity.

The pattern of estimates we document here is similar to the one we see in Fig. 3. The

exception is for rural counties, which show a larger response to cooling degree days than

6. Further aggregation yields estimates that are consistent with this finding, but statis-
tically unstable.
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Table A.3: Comparing estimates from decadal and annual data

Net migration rate (%)
(1) (2) (3) (4) (5)

HDD (100s) -0.23∗∗∗ -0.01∗ -0.08∗ 0.07 0.10
(0.06) (0.01) (0.04) (0.09) (0.16)

CDD (100s) -0.55∗∗∗ -0.02∗ -0.04 -0.35∗ -0.76∗∗∗
(0.08) (0.01) (0.08) (0.21) (0.28)

Precip. (100s mm) 0.05∗ -0.02∗∗∗ -0.08∗∗ -0.25∗∗∗ -0.22
(0.03) (0.01) (0.03) (0.09) (0.14)

Fixed effects
County ✓ ✓ ✓ ✓ ✓
Region-Decade ✓
Region-Period ✓ ✓ ✓ ✓

Dataset Census IRS IRS IRS IRS
Period 10 years 1 year 3 years 5 years 7 years
Observations 9,153 105,949 36,476 21,293 15,216
Within R2 0.04 0.001 0.002 0.005 0.004
Outcome mean 0.25 0.14 0.44 0.81 1.2
Outcome SD 1.3 1.5 4.0 6.5 9.0

Notes: Table shows the impact of decadal temperature on net migra-
tion, compared across estimates fromCensus (decadal) and IRS tax re-
turns (annual) datasets. Coefficients are the estimated impact of one
hundred additional heating or cooling degree-day each year on the
annualized net migration rate (in percentages). The first column uses
census data from 1980 to 2010. The remaining columns use IRS tax re-
turn data from 1984 to 2019, taking averages of all variables within the
given period before estimating the model. To compute the net migra-
tion rate for multi-year averages for the IRS data, we first sum the to-
tal in- and out-migration (as measured by tax exemptions claimed) for
each county across each period and then divide it by the total number
of exemptions claimed in the year prior to that period. All regressions
are weighted by the county population in 1960 and standard errors are
clustered by county.

urban counties in the IRS data. Given the limitations of the IRS data discussed in the main

text, we place more weight on the comparison in the decadal data but present both for

completeness.
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Figure A.7: Heterogeneous effects of CDDs on net migration (IRS)
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Notes: Figure shows coefficient estimates for the effect of 100 CDDs on the net migration
rate (in percentages), split by various dimensions of heterogeneity. Each set of estimates is
produced by a long differences regression of the change in net migration rate on changes
in HDD, CDD, precipitation and their interactions with the given dimension, plus Census
Region fixed effects. Urban counties are those inmetropolitan areaswithmore than 250,000
residents in 1983, rural counties are all other counties. Warm counties are thosewith above-
median average cooling degree days between 1950 and 2009. Standard errors clustered by
county and vertical represent 95% confidence intervals.
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B.4 Trends-on-Trends

We consider an alternative approach to estimating long-run changes in climate. This ap-

proach follows Burke and Tanutama (2019), who use this “trends-in-trends” model to es-

timate the impact of climate shifts on economic growth. Similar to the long-differences

approach, this methodology uses variation spanning the entire period of the relevant sam-

ple. The trends-in-trends approach does this while also incorporating data from the entire

study period. In our case, this specification isolates the effect of long-run average tempera-

ture trends realized across the whole extent of the considered sample on the same trends in

net migration, effectively comparing migration rates in counties which have warmed more

quickly to those in counties which have warmed less quickly (or even cooled). For each

county, we regress its migration rates, heating and cooling degree days, and precipitation

on a linear time trend.

Net migration rate𝑖𝑡 = 𝛼𝑖 + 𝜆𝑖Period𝑡 + 𝜀𝑖𝑡

HDD𝑖𝑡 = 𝛼𝑖 + 𝛽𝐻𝑖 Period𝑡 + 𝜀𝑖𝑡

CDD𝑖𝑡 = 𝛼𝑖 + 𝛽𝐶𝑖 Period𝑡 + 𝜀𝑖𝑡

Precip𝑖𝑡 = 𝛼𝑖 + 𝛽𝑃𝑖 Period𝑡 + 𝜀𝑖𝑡

We then regress those trends on each other, along with Census Region fixed effects 𝜙𝑟 .

𝜆̂𝑖 = 𝛼 + 𝛽̂𝐻𝑖 + 𝛽̂𝐶𝑖 + 𝛽̂𝑃𝑖 + 𝜙𝑟 + 𝜐𝑖 (3)

This specification accounts for unobservables in trends at the Census Region level using

𝜙𝑟 . Its identifying assumption is that trends in temperature and precipitation at the county

level are uncorrelated with unobservable confounders that could change trends in both

climate and migration. This method and its assumptions are similar to the long difference
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estimates, but by leveraging average trends rather than average changes over a long time

period, estimates are less likely to be affected by outlying single-period shifts at the start or

the end period used for long differences.

Fig. A.8 and Fig. A.9 show the sensitivity of the trends-on-trends estimates to alternative

specification choices for the decadal and annual datasets. Net migration rate (Winsorized)

is the net migration rate truncated at the 1st and 99th percentiles.
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Figure A.8: Sensitivity curves for decadal data (Census) – Trends-on-trends models
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Notes: Figure shows coefficient estimates for the effect of 100CDDs on the netmigration rate
measured in the decadal (Census) data using trends-on-trends models and the given left-
hand side (LHS), fixed effects (FE), and weights, where the right-hand side always includes
HDD, CDD, and precipitation. Netmigration rate is the number of netmigrants divided by
the expected population at the end of the decade in the absence ofmigration. Netmigration
rate (Winsorized) is the net migration rate truncated at the 1st and 99th percentiles. 1950s
expected population weights use the expected population in a county at the end of the
1950s in the Census data as weights for that county. Estimates indicated in red are those
reported in the main text. Thick lines and thin lines behind coefficients represent 90% and
95% confidence intervals, respectively.
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Figure A.9: Sensitivity curves for annual data (IRS) – Trends-on-trends models
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Notes: Figure shows coefficient estimates for the effect of 100 CDDs on the net migration
rate measured in the annual (IRS) data using trends-on-trends models and the given left-
hand side (LHS), fixed effects (FE), and weights, where the right-hand side always includes
HDD, CDD, and precipitation. Netmigration rate is the number of netmigrants divided by
the expected population at the end of the decade in the absence ofmigration. Netmigration
rate (Winsorized) is the net migration rate truncated at the 1st and 99th percentiles. 1950s
expected population weights use the expected population in a county at the end of the
1950s in the Census data as weights for that county. Estimates indicated in red are those
reported in the main text. Thick lines and thin lines behind coefficients represent 90% and
95% confidence intervals, respectively.
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